DW
Di Wu
Author with expertise in Computational Methods in Drug Discovery
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
372
h-index:
24
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DeepAffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks

Mostafa Karimi et al.Feb 15, 2019
Motivation: Drug discovery demands rapid quantification of compound-protein interaction (CPI). However, there is a lack of methods that can predict compound-protein affinity from sequences alone with high applicability, accuracy, and interpretability. Results: We present a seamless integration of domain knowledges and learning-based approaches. Under novel representations of structurally-annotated protein sequences, a semi-supervised deep learning model that unifies recurrent and convolutional neural networks has been proposed to exploit both unlabeled and labeled data, for jointly encoding molecular representations and predicting affinities. Our representations and models outperform conventional options in achieving relative error in IC$_{50}$ within 5-fold for test cases and 20-fold for protein classes not included for training. Performances for new protein classes with few labeled data are further improved by transfer learning. Furthermore, separate and joint attention mechanisms are developed and embedded to our model to add to its interpretability, as illustrated in case studies for predicting and explaining selective drug-target interactions. Lastly, alternative representations using protein sequences or compound graphs and a unified RNN/GCNN-CNN model using graph CNN (GCNN) are also explored to reveal algorithmic challenges ahead. Availability: Data and source codes are available at https://github.com/Shen-Lab/DeepAffinity Supplementary Information: Supplementary data are available at http://shen-lab.github.io/deep-affinity-bioinf18-supp-rev.pdf
0

Explainable Deep Relational Networks for Predicting Compound-Protein Affinities and Contacts

Mostafa Karimi et al.Dec 30, 2019
Abstract Predicting compound-protein affinity is beneficial for accelerating drug discovery. Doing so without the often-unavailable structure data is gaining interest. However, recent progress in structure-free affinity prediction, made by machine learning, focuses on accuracy but leaves much to be desired for interpretability. Defining inter-molecular contacts underlying affinities as a vehicle for interpretability, our large-scale interpretability assessment finds previously-used attention mechanisms inadequate. We thus formulate a hierarchical multi-objective learning problem whose predicted contacts form the basis for predicted affinities. And we solve the problem by embedding protein sequences (by hierarchical recurrent neural networks) and compound graphs (by graph neural networks) with joint attentions between protein residues and compound atoms. We further introduce three methodological advances to enhance interpretability: (1) structure-aware regularization of attentions using protein sequence-predicted solvent exposure and residue-residue contact maps; (2) supervision of attentions using known inter-molecular contacts in training data; and (3) an intrinsically explainable architecture where atomic-level contacts or “relations” lead to molecular-level affinity prediction. The first two and all three advances result in DeepAffinity+ and DeepRelations, respectively. Our methods show generalizability in affinity prediction for molecules that are new and dissimilar to training examples. Moreover, they show superior interpretability compared to state-of-the-art interpretable methods: with similar or better affinity prediction, they boost the AUPRC of contact prediction by around 33, 35, 10, and 9-fold for the default test, new-compound, new-protein, and both-new sets, respectively. We further demonstrate their potential utilities in contact-assisted docking, structure-free binding site prediction, and structure-activity relationship studies without docking. Our study represents the first model development and systematic model assessment dedicated to interpretable machine learning for structure-free compound-protein affinity prediction.
0

DeepAffinity: Interpretable Deep Learning of Compound Protein Affinity through Unified Recurrent and Convolutional Neural Networks

Mostafa Karimi et al.Jun 20, 2018
Motivation: Drug discovery demands rapid quantification of compound-protein interaction (CPI). However, there is a lack of methods that can predict compound-protein affinity from sequences alone with high applicability, accuracy, and interpretability. Results: We present a seamless integration of domain knowledges and learning-based approaches. Under novel representations of structurally-annotated protein sequences, a semi-supervised deep learning model that unifies recurrent and convolutional neural networks has been proposed to exploit both unlabeled and labeled data, for jointly encoding molecular representations and predicting affinities. Our representations and models outperform conventional options in achieving relative error in IC50 within 5-fold for test cases and 20-fold for protein classes not included for training. Performances for new protein classes with few labeled data are further improved by transfer learning. Furthermore, separate and joint attention mechanisms are developed and embedded to our model to add to its interpretability, as illustrated in case studies for predicting and explaining selective drug-target interactions. Lastly, alternative representations using protein sequences or compound graphs and a unified RNN/GCNN-CNN model using graph CNN (GCNN) are also explored to reveal algorithmic challenges ahead. Availability: Data and source codes are available at https://github.com/Shen-Lab/DeepAffinity Supplementary Information: Supplementary data are available at http://shen-lab.github.io/deep-affinity-bioinf18-supp-rev.pdf