ABSTRACT Nuclear rupture has long been associated with deficits or defects in lamins, with recent results also indicating a role for actomyosin stress, but key physical determinants of rupture remain unclear. Here, lamin-B stably interacts with the nuclear membrane at sites of low Gaussian curvature yet dilutes at high-curvature to favor rupture, whereas lamin-A depletes similarly but only at high strain-rates. Live cell imaging of lamin-B1 gene-edited cancer cells is complemented by fixed-cell imaging of ruptured nuclei in: iPS-derived cells from progeria patients, cells within beating chick embryo hearts, and cancer cells that develop multiple ruptures in migrating through small pores. Dilution and curvature-dependent rupture fit a parsimonious model of a stiff filament that detaches from a curved surface, suggesting an elastic-type response of lamin-B, but rupture is also modestly suppressed by inhibiting myosin-II and by hypotonic stress, which slow the strain rates. Lamin-A dilution and nuclear rupture likelihood indeed increase above a threshold rate of pulling into small pipettes, suggesting a viscoplastic coupling to the envelope for protection against nuclear rupture. Summary statement High nuclear curvature drives lamina dilution and nuclear envelope rupture even when myosin stress is inhibited. Stiff filaments generally dilute from sites of high Gaussian curvature, providing mathematical fits of experiments.