Abstract The accurate prediction of genomic breeding values is central to genomic selection in both plant and animal breeding studies. Genomic prediction involves the use of thousands of molecular markers spanning the entire genome and therefore requires methods able to efficiently handle high dimensional data. Not surprisingly, machine learning methods are becoming widely advocated for and used in genomic prediction studies. These methods encompass different groups of supervised and unsupervised learning methods. Although several studies have compared the predictive performances of individual methods, studies comparing the predictive performance of different groups of methods are rare. However, such studies are crucial for identifying (i) groups of methods with superior genomic predictive performance and assessing (ii) the merits and demerits of such groups of methods relative to each other and to the established classical methods. Here, we comparatively evaluate the genomic predictive performance and computational cost of several groups of supervised machine learning methods, specifically, regularized regression methods, deep, ensemble and instance-based learning algorithms, using one simulated animal breeding dataset and three empirical maize breeding datasets obtained from a commercial breeding program. Our results show that the relative predictive performance and computational expense of the groups of machine learning methods depend upon both the data and target traits and that for classical regularized methods, increasing model complexity can incur huge computational costs but does not necessarily always improve predictive accuracy. Thus, despite their greater complexity and computational burden, neither the adaptive nor the group regularized methods clearly improved upon the results of their simple regularized counterparts. This rules out selection of one procedure among machine learning methods for routine use in genomic prediction. The results also show that, because of their competitive predictive performance, computational efficiency, simplicity and therefore relatively few tuning parameters, the classical linear mixed model and regularized regression methods are likely to remain strong contenders for genomic prediction. The dependence of predictive performance and computational burden on target datasets and traits call for increasing investments in enhancing the computational efficiency of machine learning algorithms and computing resources. Author summary Machine learning methods are well suited for efficiently handling high dimensional data. Particularly, supervised machine learning methods have been successfully used in genomic prediction or genome-enabled selection. However, their comparative predictive accuracy is still poorly understood, yet this is a critical issue in plant and animal breeding studies given that increasing methodological complexity can substantially increase computational complexity or cost. Here, we show that predictive performance is both data and target trait dependent thus ruling out selection of one method for routine use in genomic prediction. We also show that for this reason, relatively low computational complexity and competitive predictive performance, the classical linear mixed model approach and regularized regression methods remain strong contenders for genomic prediction.