MH
Marie Hebel
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Integrative analysis of epigenetics data identifies gene-specific regulatory elements

Florian Schmidt et al.Mar 26, 2019
+7
M
A
F
Understanding the complexity of transcriptional regulation is a major goal of computational biology. Because experimental linkage of regulatory sites to genes is challenging, computational methods considering epigenomics data have been proposed to create tissue-specific regulatory maps. However, we showed that these approaches are not well suited to account for the variations of the regulatory landscape between cell-types. To overcome these drawbacks, we developed a new method called STITCHIT, that identifies and links putative regulatory sites to genes. Within STITCHIT, we consider the chromatin accessibility signal of all samples jointly to identify regions exhibiting a signal variation related to the expression of a distinct gene. \stitchit outperforms previous approaches in various validation experiments and was used with a genome-wide CRISPR-Cas9 screen to prioritize novel doxorubicin-resistance genes and their associated non-coding regulatory regions. We believe that our work paves the way for a more refined understanding of transcriptional regulation at the gene-level.
0

Bioinformatics analysis quantifies neighborhood preferences of cancer cells in Hodgkin lymphoma.

Jennifer Scheidel et al.Dec 4, 2017
+9
T
J
J
Motivation: Hodgkin lymphoma is a tumor of the lymphatic system and represents one of the most frequent lymphoma in the Western world. It is characterized by Hodgkin cells and Reed-Sternberg cells, which exhibit a broad morphological spectrum. The cells are visualized by immunohistochemical staining of tissue sections. In pathology, tissue images are mainly manually evaluated, relying on the expertise and experience of pathologists. Computational quantification methods become more and more essential to evaluate tissue images. In particular, the distribution of cancer cells is of great interest. Results: Here, we systematically quantified and investigated cancer cell properties and their spatial neighborhood relations by applying statistical analyses to whole slide images of Hodgkin lymphoma and lymphadenitis, which describes a non-cancerous inflammation of the lymph node. We differentiated cells by their morphology and studied the spatial neighborhood relation of more than 400,000 immunohistochemically stained cells. We found that, according to their morphological features, the cells exhibited significant preferences for and aversions to cells of specific profiles as nearest neighbor. We quantified differences between Hodgkin lymphoma and lymphadenitis concerning the neighborhood relations of cells and the sizes of cells. The approach can easily be applied to other cancer types.
11

Computational prediction of CRISPR-impaired non-coding regulatory regions

Nina Baumgarten et al.Dec 22, 2020
+3
M
M
N
Abstract Genome-wide CRISPR screens are becoming more widespread and allow the simultaneous interrogation of thousands of genomic regions. Although recent progress has been made in the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic information about regulatory elements for the interpretation of CRISPR mutations in non-coding regions. We illustrate our approach on the analysis of a genome-wide CRISPR screen in hTERT-RPE-1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin in these cells. We infer links to established and to novel chemoresistance genes. Our approach is general and can be applied on any cell type and with different CRISPR enzymes.