Environmental fluctuations in the availability of nutrients lead to intricate metabolic strategies. Candidatus Accumulibacter phosphatis, a polyphosphate accumulating organism (PAO) responsible for enhanced biological phosphorus removal (EBPR) from wastewater treatment systems, is prevalent in aerobic/anaerobic environments. While the overall metabolic traits of these bacteria are well described, the inexistence of isolates has led to controversial conclusions on the metabolic pathways used. Here, we experimentally determined the redox cofactor preference of different oxidoreductases in the central carbon metabolism of a highly enriched Ca. A. phosphatis culture. Remarkably, we observed that the acetoacetyl-CoA reductase engaged in polyhydroxyalkanoates (PHA) synthesis is NADH-preferring instead of the generally assumed NADPH dependency. Based on previously published meta-omics data and the results of enzymatic assays, a reduced central carbon metabolic network was constructed and used for simulating different metabolic operating modes. In particular, scenarios with different acetate-to-glycogen consumption ratios were simulated. For a high ratio (i.e. more acetate), a polyphosphate-based metabolism arises as optimal with a metabolic flux through the glyoxylate shunt. In case of a low acetate-to-glycogen ratio, glycolysis is used in combination with reductive branch of the TCA cycle. Thus, optimal metabolic flux strategies will depend on the environment (acetate uptake) and on intracellular storage compounds availability (polyphosphate/glycogen). This metabolic flexibility is enabled by the NADH-driven PHA synthesis. It allows for maintaining metabolic activity under varying environmental substrate conditions, with high carbon conservation and lower energetic costs compared to NADPH dependent PHA synthesis. Such (flexible) metabolic redox coupling can explain PAOs′ competitiveness under oxygen-fluctuating environments.