Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation. Using the FANTOM5 CAGE expression atlas, the authors show that bidirectional capped RNAs are a signature feature of active enhancers and identify over 40,000 enhancer candidates from over 800 human cell and tissue samples across the whole human body. FANTOM5 (standing for functional annotation of the mammalian genome 5) is the fifth major stage of a major international collaboration that aims to dissect the transcriptional regulatory networks that define every human cell type. Two Articles in this issue of Nature present some of the project's latest results. The first paper uses the FANTOM5 panel of tissue and primary cell samples to define an atlas of active, in vivo bidirectionally transcribed enhancers across the human body. These authors show that bidirectional capped RNAs are a signature feature of active enhancers and identify more than 40,000 enhancer candidates from over 800 human cell and tissue samples. The enhancer atlas is used to compare regulatory programs between different cell types and identify disease-associated regulatory SNPs, and will be a resource for studies on cell-type-specific enhancers. In the second paper, single-molecule sequencing is used to map human and mouse transcription start sites and their usage in a panel of distinct human and mouse primary cells, cell lines and tissues to produce the most comprehensive mammalian gene expression atlas to date. The data provide a plethora of insights into open reading frames and promoters across different cell types in addition to valuable annotation of mammalian cell-type-specific transcriptomes.