Abstract Objective The basis for clinical variation related to underlying Progressive Supranuclear Palsy (PSP) pathology is unknown. We performed a genome wide association study (GWAS) to identify genetic determinants of PSP phenotype. Methods Two independent pathological and clinically diagnosed PSP cohorts were genotyped and phenotyped to create Richardson’s syndrome (RS) and non-RS groups. We carried out separate logistic regression GWAS to compare RS and non-RS groups and then combined datasets to carry out a whole cohort analysis (RS=367, non-RS=130). We validated our findings in a third cohort by referring to data from 100 deeply phenotyped cases from a recent GWAS. We assessed the expression/co-expression patterns of our identified genes and used our data to carry out gene-based association testing. Results Our lead single nucleotide polymorphism (SNP), rs564309, showed an association signal in both cohorts, reaching genome wide significance in our whole cohort analysis – OR 5.5 (3.2-10.0), p-value 1.7×10 −9 . rs564309 is an intronic variant of the tripartite motif-containing protein 11 ( TRIM11 ) gene, a component of the ubiquitin proteasome system (UPS). In our third cohort, minor allele frequencies of surrogate SNPs in high linkage disequilibrium with rs564309 replicated our findings. Gene based association testing confirmed an association signal at TRIM11 . We found that TRIM11 is predominantly expressed neuronally, in the cerebellum and basal ganglia. Interpretation Our study suggests that the TRIM11 locus is a genetic modifier of PSP phenotype and potentially adds further evidence for the UPS having a key role in tau pathology, therefore representing a target for disease modifying therapies.