LS
Lukas Schrangl
Author with expertise in Atomic Force Microscopy Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Advanced Quantification of Receptor–Ligand Interaction Lifetimes via Single-Molecule FRET Microscopy

Lukas Schrangl et al.Aug 13, 2024
Receptor-ligand interactions at cell interfaces initiate signaling cascades essential for cellular communication and effector functions. Specifically, T cell receptor (TCR) interactions with pathogen-derived peptides presented by the major histocompatibility complex (pMHC) molecules on antigen-presenting cells are crucial for T cell activation. The binding duration, or dwell time, of TCR-pMHC interactions correlates with downstream signaling efficacy, with strong agonists exhibiting longer lifetimes compared to weak agonists. Traditional surface plasmon resonance (SPR) methods quantify 3D affinity but lack cellular context and fail to account for factors like membrane fluctuations. In the recent years, single-molecule Förster resonance energy transfer (smFRET) has been applied to measure 2D binding kinetics of TCR-pMHC interactions in a cellular context. Here, we introduce a rigorous mathematical model based on survival analysis to determine exponentially distributed receptor-ligand interaction lifetimes, verified through simulated data. Additionally, we developed a comprehensive analysis pipeline to extract interaction lifetimes from raw microscopy images, demonstrating the model's accuracy and robustness across multiple TCR-pMHC pairs. Our new software suite automates data processing to enhance throughput and reduce bias. This methodology provides a refined tool for investigating T cell activation mechanisms, offering insights into immune response modulation.
0
Citation1
0
Save
0

Single-molecule FRET and tracking of transfected biomolecules: multi-dimensional protein dynamics in living cells

Abhinaya Anandamurugan et al.Jan 1, 2023
Proteins in cells exhibit conformational dynamics, equally influenced by dynamic interactions with other biomolecules and their spatial variations, which can be induced by the protein9s compartment. Altogether this multi-dimensional dynamic is difficult to measure in cellula, because of limitations in instrumentation, fluorescence methodologies and the difficulty to track freely diffusing molecules. Here, we present a bottom-up engineering approach, which allows us to track transfected proteins in cellula and analyze time-resolved single-molecule FRET efficiencies. This has been achieved by alternating laser excitation (ALEX) based three-channel (donor, acceptor and FRET intensity) tracking with a live-cell HILO microscope. Unexpectedly, we find that the heat shock protein Hsp90 shows different conformational populations in vitro and in cellula. Moreover, Hsp909s conformational states depend on the localization within the cell, which is demonstrated by comparing a physical (microinjection) and a biological (SLO) transfection method. FRET-TTB (Tracking of Transfected Biomolecules) opens the path to study protein conformational dynamics of transfected and native biomolecules in cellula, including time-resolved cellular localization.
0

Deconstructing CTL-mediated autoimmunity through weak TCR-cross-reactivity towards highly abundant self-antigen

Angelika Plach et al.Aug 19, 2024
ABSTRACT T-cell antigen receptors (TCRs) exhibit inherent cross-reactivity which broadens the spectrum of epitopes that are recognizable by a finite TCR-repertoire but also carries the risk of autoimmunity. However, TCRs support also a high level of antigen specificity as they allow T-cells to discriminate single antigenic peptide/MHC complexes (pMHCs) against millions of structurally related self-pMHCs, in some cases based on the absence or presence of a single methyl-group. How TCRs manage to convey such seemingly contrary properties and why some T-cells become over time autoreactive despite negative thymic selection, has remained elusive. Here, we devised a non-invasive molecular live cell imaging platform to investigate the biophysical parameters governing stimulatory TCR:pMHC interactions in settings of autoreactivity and anti-viral responses - two extremes in T-cell antigen recognition. We show that CMV-specific CD8+ RA14-T-cells respond effectively to even a single HLA-A2/CMV (A2/CMV) antigen, with synaptic TCR:pMHC lifetimes lasting seconds. In contrast, cross-reactivity of type 1 diabetes (T1D)-associated CD8+ 1E6 T-cells towards HLA-A2/preproinsulin (A2/PPI) self-epitopes involved ten-fold less stable synaptic TCR interactions resulting in severely attenuated ZAP70 recruitment and downstream signaling. Compared to A2/CMV-engaged RA14 T-cells, 1E6-T-cells required for activation 4000 or more A2/PPI and at least 100-times as many simultaneously pMHC-engaged TCRs. In support of antigen discrimination, CD8 co-engagement of MHC class I (MHCI) strengthened both settings of TCR:pMHC interactions equally but was essential only for sensitized virus detection but not autorecognition (1000-versus 5-fold enhancement). We conclude that the binding dynamics of TCRs and CD8 with pMHC shape the boundaries of central tolerance in the physiological context of the phenomenal yet also differential T-cell antigen detection capacity, TCR-cross-reactivity and self-antigen abundance. Gained insights are integral to a molecular and quantitative understanding of CD8+ T-cell mediated autoimmunity and protective immunity against infections and cancer. ONE SENTENCE SUMMARY With the use of newly devised molecular live-cell imaging modalities we measured with unprecedented precision T-cell antigen recognition dynamics in human T-cells in settings of anti-viral immunity and autoimmunity-causing cross-reactivity. These two extremes within the spectrum of T-cell antigen detection differed substantially with regard to synaptic TCR: antigen-engagement, the level of sensitization through the CD8-coreceptor and the overall efficiency of ensuing downstream signaling. Our results demarcate limits of central tolerance and protective immunity and set quantitative boundaries on the occurrence of autoimmunity with direct implications for T-cell-based designs of immunotherapies.