ME
Maheswarareddy Emani
Author with expertise in Molecular Mechanisms of Kidney Development and Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
19
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
45

A High Content Screen for Mucin-1-Reducing Compounds Identifies Fostamatinib as a Candidate for Rapid Repurposing for Acute Lung Injury during the COVID-19 pandemic

Maria Alimova et al.Jun 30, 2020
Summary Drug repurposing is the only method capable of delivering treatments on the shortened time-scale required for patients afflicted with lung disease arising from SARS-CoV-2 infection. Mucin-1 (MUC1), a membrane-bound molecule expressed on the apical surfaces of most mucosal epithelial cells, is a biochemical marker whose elevated levels predict the development of acute lung injury (ALI) and respiratory distress syndrome (ARDS), and correlate with poor clinical outcomes. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce MUC1 protein abundance. Our screen identified Fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo , Fostamatinib reduced MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro , SYK inhibition by Fostamatinib promoted MUC1 removal from the cell surface. Our work reveals Fostamatinib as a repurposing drug candidate for ALI and provides the rationale for rapidly standing up clinical trials to test Fostamatinib efficacy in patients with COVID-19 lung injury.
45
Paper
Citation12
0
Save
11

Blocking the Rac1-TRPC5 pathway protects human kidney cells

Yiming Zhou et al.Jan 1, 2021
Podocyte injury and the appearance of proteinuria are key features of several progressive kidney diseases. Genetic deletion or selective inhibition of TRPC5 channels with small-molecule inhibitors protects podocytes in rodent models of disease, but less is known about the human relevance and translatability of TRPC5 inhibition. Here, we investigate the effect of TRPC5 inhibition in puromycin aminonucleoside (PAN)-treated human iPSC-derived podocytes and kidney organoids. We first established that systemic administration of the TRPC5-specific blocker AC1903 was sufficient to protect podocyte cytoskeletal proteins and suppress proteinuria in PAN-induced nephrosis in rats, an established model of podocyte injury and progressive kidney disease. PAN treatment also triggered the Rac1-TRPC5 injury pathway in human iPSC-derived podocytes and kidney organoids. TRPC5 current was recorded in human iPSC-derived podocytes, and was blocked by AC1903. The TRPC5 blocker also reversed the effects of PAN-induced injury in human podocytes in both 2D and 3D culture systems. Taken together, these results revealed the relevance of the TRPC5-Rac1 pathway in human kidney tissue highlighting the potential of this therapeutic strategy for patients.