AP
Alexandra Popa
Author with expertise in Coronavirus Disease 2019 Research
Boehringer Ingelheim (Austria), Ovidius University, York University
+ 9 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
9
h-index:
24
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Mutational dynamics and transmission properties of SARS-CoV-2 superspreading events in Austria

Alexandra Popa et al.Oct 24, 2023
+35
M
J
A
Abstract Superspreading events shape the COVID-19 pandemic. Here we provide a national-scale analysis of SARS-CoV-2 outbreaks in Austria, a country that played a major role for virus transmission across Europe and beyond. Capitalizing on a national epidemiological surveillance system, we performed deep whole-genome sequencing of virus isolates from 576 samples to cover major Austrian SARS-CoV-2 clusters. Our data chart a map of early viral spreading in Europe, including the path from low-frequency mutations to fixation. Detailed epidemiological surveys enabled us to calculate the effective SARS-CoV-2 population bottlenecks during transmission and unveil time-resolved intra-patient viral quasispecies dynamics. This study demonstrates the power of integrating deep viral genome sequencing and epidemiological data to better understand how SARS-CoV-2 spreads through populations. Graphical Abstract
55

SARS-CoV-2 escapes CD8 T cell surveillance via mutations in MHC-I restricted epitopes

Benedikt Agerer et al.Oct 24, 2023
+23
V
M
B
Abstract CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control, though direct evidence has been lacking so far. Here, we identified non-synonymous mutations in MHC-I restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV- 2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding, which was associated with a loss of recognition and functional responses by CD8+ T cells isolated from HLA-matched COVID-19 patients. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through escape mutations in MHCI-restricted viral epitopes. This provides evolutionary evidence for CD8+ T cell immunity controlling SARS-CoV-2 with consequences for COVID-19 vaccine design.
55
0
Save
28

Genetic dependencies associated with transcription factor activities in human cancer cell lines

Venu Thatikonda et al.Oct 24, 2023
+10
M
V
V
Abstract Transcription factors (TFs) are key components of the aberrant transcriptional programs in cancer cells. In this study, we used TF activity (TFa), inferred from the downstream regulons as a potential biomarker to identify associated genetic vulnerabilities in cancer cells. Our linear model framework, integrating TFa and genome-wide CRISPR knockout datasets identified 1,770 candidate TFa-target pairs across different cancer types and assessed their survival impact in patient data. As a proof of concept, through inhibitor screens and genetic depletion assays in cell lines, we validated the dependency of cell lines on predicted targets linked to TEAD1, the most prominent TF from our analysis. Overall, these candidate pairs represent an attractive resource for early-stage targets and drug discovery programs in oncology.
0

The fitness cost of mis-splicing is the main determinant of alternative splicing patterns

Baptiste Saudemont et al.May 7, 2020
+5
J
A
B
Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of functional protein variants or to the regulation of gene expression, notably via nonsense-mediated mRNA decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts, and the question of the relative proportion of splicing errors vs. functional splice variants remains highly debated. We propose here a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We first analyzed the transcriptome of the intron-rich unicellular eukaryote Paramecium tetraurelia. We show that both in normal and in NMD-deficient cells, AS rates (intron retention, alternative splice site usage or cryptic intron splicing) strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed both for AS events that are detectable by NMD or not, which invalidates the hypothesis of a possible link with the regulation of gene expression. Our results indicate that in genes with a median expression level, 92%-98% of observed splice variants correspond to errors. Interestingly, we observed the same patterns in human transcriptomes. These results are consistent with the mutation-selection-drift theory, which predicts that genes under weaker selective pressure should accumulate more maladaptive substitutions, and therefore should be more prone to errors of gene expression.
0

The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease

Lindsay Kosack et al.May 7, 2020
+21
A
B
L
The marsupial Tasmanian devil (Sarcophilus harrisii) faces extinction due to transmissible devil facial tumor disease (DFTD). To unveil the molecular underpinnings of DFTD, we designed an approach that combines sensitivity to drugs with an integrated systems-biology characterization. Sensitivity to inhibitors of the ERBB family of receptor tyrosine kinases correlated with their overexpression, suggesting a causative link. Proteomic and DNA methylation analyses revealed tumor-specific signatures linked to oncogenic signaling hubs including evolutionary conserved STAT3. Indeed, ERBB inhibition blocked phosphorylation of STAT3 and arrested cancer cells. Pharmacological blockade of ERBB signaling prevented tumor growth in a xenograft model and resulted in recovery of MHC class I gene expression. This link between the hyperactive ERBB-STAT3 axis and MHC class I mediated tumor immunosurveillance provides mechanistic insights into horizontal transmissibility and led us to the proposition of a dual chemo-immunotherapeutic strategy to save Tasmanian devils from DFTD.
0
0
Save
10

Precision RNAi using synthetic shRNAmir target sites

Thomas Hoffmann et al.Oct 24, 2023
+17
M
A
T
Abstract Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.
0

Ifnar1 signaling breaks the hepatic urea cycle to regulate adaptive immunity

Alexander Lercher et al.May 7, 2020
+18
A
A
A
Infections induce complex host responses linked to antiviral defense, inflammation and tissue damage and repair. These processes are increasingly understood to involve systemic metabolic reprogramming. We hypothesized that the liver as a central metabolic hub may orchestrate many of these changes during infection. Thus, we investigated the systemic interplay between inflammation and metabolism in a mouse model of chronic viral infection and hepatitis. Here we show that virus-induced type I interferon (IFN-I) modulates wide-spread metabolic alterations of the liver in a hepatocyte-intrinsic Ifnar1-dependent way. Specifically, IFN-I repressed the transcription of numerous genes with metabolic function including Otc and Ass1, which encode enzymes of the urea cycle. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8 T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation.
1

Interrogation of cancer gene dependencies reveals novel paralog interactions of autosome and sex chromosome encoded genes

Anna Köferle et al.Oct 24, 2023
+13
A
A
A
Abstract Genetic networks are characterized by extensive buffering. During tumour evolution, disruption of these functional redundancies can create de novo vulnerabilities that are specific to cancer cells. In this regard, paralog genes are of particular interest, as the loss of one paralog gene can render tumour cells dependent on a remaining paralog. To systematically identify cancer-relevant paralog dependencies, we searched for candidate dependencies using CRISPR screens and publicly available loss-of-function datasets. Our analysis revealed >2,000 potential candidate dependencies, several of which were subsequently experimentally validated. We provide evidence that DNAJC15-DNAJC19, FAM50A-FAM50B and RPP25-RPP25L are novel cancer relevant paralog dependencies. Importantly, our analysis also revealed unexpected redundancies between sex chromosome genes. We show that chrX- and chrY- encoded paralogs, as exemplified by ZFX-ZFY, DDX3X-DDX3Y and EIF1AX-EIF1AY , are functionally linked so that tumour cell lines from male patients with Y-chromosome loss become exquisitely dependent on the chrX-encoded gene. We therefore propose genetic redundancies between chrX- and chrY- encoded paralogs as a general therapeutic strategy for human tumours that have lost the Y-chromosome.