BA
Benedikt Agerer
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
263
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2

Alexandra Popa et al.Nov 24, 2020
Superspreading events shaped the coronavirus disease 2019 (COVID-19) pandemic, and their rapid identification and containment are essential for disease control. Here, we provide a national-scale analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading during the first wave of infections in Austria, a country that played a major role in initial virus transmissions in Europe. Capitalizing on Austria's well-developed epidemiological surveillance system, we identified major SARS-CoV-2 clusters during the first wave of infections and performed deep whole-genome sequencing of more than 500 virus samples. Phylogenetic-epidemiological analysis enabled the reconstruction of superspreading events and charts a map of tourism-related viral spread originating from Austria in spring 2020. Moreover, we exploited epidemiologically well-defined clusters to quantify SARS-CoV-2 mutational dynamics, including the observation of low-frequency mutations that progressed to fixation within the infection chain. Time-resolved virus sequencing unveiled viral mutation dynamics within individuals with COVID-19, and epidemiologically validated infector-infectee pairs enabled us to determine an average transmission bottleneck size of 103 SARS-CoV-2 particles. In conclusion, this study illustrates the power of combining epidemiological analysis with deep viral genome sequencing to unravel the spread of SARS-CoV-2 and to gain fundamental insights into mutational dynamics and transmission properties.
0
Citation232
0
Save
1

ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology

Riem Gawish et al.Aug 9, 2021
Summary Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16 , a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modelling revealed how Spike mutations of maVie16 enhanced interaction with murine ACE2. MaVie16 induced profound pathology in BALB/c and C57BL/6 mice and the resulting mouse COVID-19 ( mCOVID-19 ) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNγ and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19 , revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo . Key points The mouse-adapted SARS-CoV-2 strain maVie16 causes fatal disease in BALB/c mice and substantial inflammation, pneumonia and immunity in C57BL/6 mice TNFα/IFNγ blockade ameliorates maVie16 -induced immunopathology MaVie16 infection depends on ACE2 and soluble ACE2 inhalation can prevent disease
1
Citation1
0
Save
0

Increase in ER-mitochondria contacts and mitochondrial fusion are hallmarks of mitochondrial activation during embryogenesis

Anastasia Chugunova et al.Jun 11, 2024
Summary Mitochondrial ATP production is essential for development, yet the mechanisms underlying the continuous increase in mitochondrial activity during embryogenesis remain elusive. Using zebrafish as a model system for vertebrate development, we comprehensively profile mitochondrial activity, morphology, metabolome, proteome and phospho-proteome as well as respiratory chain enzymatic activity. Our data show that the increase in mitochondrial activity during embryogenesis does not require mitochondrial biogenesis, is not limited by metabolic substrates at early stages, and occurs without an increase in the abundance of respiratory chain complexes or their in vitro activity. Our analyses pinpoint a previously unexplored increase in mitochondrial-ER association during early stages in combination with changes in mitochondrial morphology at later stages as possible contributors to the rise in mitochondrial activity during embryogenesis. Overall, our systematic profiling of the molecular and morphological changes to mitochondria during embryogenesis provides a valuable resource for further studying mitochondrial function during embryogenesis.
3

Nuclear receptor corepressor 1 controls regulatory T cell subset differentiation and effector function

Valentina Stolz et al.Mar 28, 2022
Abstract FOXP3 + regulatory T cells (Tregs) are key for immune homeostasis. Tregs are a heterogenous population, however mechanisms regulating their transition from naïve to effector Tregs (eTregs) are poorly understood. Here, we reveal a novel role for nuclear receptor corepressor 1 (NCOR1) in effector Tregs (eTregs). NCOR1 represses an effector signature in naïve Tregs and NCOR1-deficiency increases the fraction of eTregs at steady-state accompanied with an upregulation of cholesterol biosynthesis pathways. Mechanistically, NCOR1-deficiency in murine and human Tregs results in enhanced expression of MYC, an essential driver of eTreg differentiation, resulting in enrichment of MYC target genes. Disruption of the interaction of liver X receptors (LXRs), crucial regulators of cholesterol biosynthesis, with NCOR1 by an LXR agonist leads to increased MYC expression in in vitro generated WT Tregs. Functionally, NCOR1 deficiency in Tregs compromises their ability to protect mice from severe weight loss and intestinal inflammation in adoptive CD4 + T cell transfer colitis. Our data uncover that an LXR-NCOR1 axis regulates eTreg differentiation, and that NCOR1 restrains MYC expression and eTreg differentiation and positively controls effector functions of Tregs.
3
3.0
1
Save