AN
Anusha Nathan
Author with expertise in Immunobiology of Dendritic Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
225
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

Suppressing chemoresistance in lung cancer via dynamic phenotypic switching and intermittent therapy

Arin Nam et al.Apr 7, 2020
A major challenge in cancer therapy is drug resistance, which is typically attributed to acquired mutations and tumor heterogeneity. However, emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance, although, the details of such mechanisms are poorly understood. Here, by combining real time cellular growth data with mathematical modeling, we showed that the cisplatin-sensitive and tolerant lung cancer cells when co-cultured in cisplatin-free and cisplatin-treated environments, exhibit drastically different group strategies in response to environmental changes. While tolerant cells exhibited a persister-like behaviour and were attenuated by sensitive cells, sensitive cells ‘learned’ to evade chemotherapy from tolerant cells when co-cultured. Further, tolerant cells could switch phenotypes to become sensitive, although high cisplatin concentrations suppressed this switching. Finally, switching cisplatin administration from continuous to intermittent suppressed the emergence of tolerant cells, suggesting that intermittent rather than continuous chemotherapy may result in better outcomes in lung cancer.
25
Citation9
0
Save
0

Structure-based network analysis predicts pathogenic variants in human proteins associated with inherited retinal disease

Blake Hauser et al.May 27, 2024
Abstract Advances in gene sequencing technologies have accelerated the identification of genetic variants, but better tools are needed to understand which are causal of disease. This would be particularly useful in fields where gene therapy is a potential therapeutic modality for a disease-causing variant such as inherited retinal disease (IRD). Here, we apply structure-based network analysis (SBNA), which has been successfully utilized to identify variant-constrained amino acid residues in viral proteins, to identify residues that may cause IRD if subject to missense mutation. SBNA is based entirely on structural first principles and is not fit to specific outcome data, which makes it distinct from other contemporary missense prediction tools. In 4 well-studied human disease-associated proteins (BRCA1, HRAS, PTEN, and ERK2) with high-quality structural data, we find that SBNA scores correlate strongly with deep mutagenesis data. When applied to 47 IRD genes with available high-quality crystal structure data, SBNA scores reliably identified disease-causing variants according to phenotype definitions from the ClinVar database. Finally, we applied this approach to 63 patients at Massachusetts Eye and Ear (MEE) with IRD but for whom no genetic cause had been identified. Untrained models built using SBNA scores and BLOSUM62 scores for IRD-associated genes successfully predicted the pathogenicity of novel variants (AUC = 0.851), allowing us to identify likely causative disease variants in 40 IRD patients. Model performance was further augmented by incorporating orthogonal data from EVE scores (AUC = 0.927), which are based on evolutionary multiple sequence alignments. In conclusion, SBNA can used to successfully identify variants as causal of disease in human proteins and may help predict variants causative of IRD in an unbiased fashion.