PM
Philip Mitchell
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
9
h-index:
83
/
i10-index:
266
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Age-dependent genetic variants associated with longitudinal changes in brain structure across the lifespan

Rachel Brouwer et al.Apr 27, 2020
+201
K
M
R
Summary Human brain structure changes throughout our lives. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental, and neurodegenerative diseases. Here, we identified common genetic variants that affect rates of brain growth or atrophy, in the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal MRI data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene-set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and ageing.
0

Genomic dissection of bipolar disorder and schizophrenia including 28 subphenotypes

Douglas Ruderfer et al.Aug 8, 2017
+541
A
S
D
Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable disorders that share a significant proportion of common risk variation. Understanding the genetic factors underlying the specific symptoms of these disorders will be crucial for improving diagnosis, intervention and treatment. In case-control data consisting of 53,555 cases (20,129 BD, 33,426 SCZ) and 54,065 controls, we identified 114 genome-wide significant loci (GWS) when comparing all cases to controls, of which 41 represented novel findings. Two genome-wide significant loci were identified when comparing SCZ to BD and a third was found when directly incorporating functional information. Regional joint association identified a genomic region of overlapping association in BD and SCZ with disease-independent causal variants indicating a fourth region contributing to differences between these disorders. Regional SNP-heritability analyses demonstrated that the estimated heritability of BD based on the SCZ GWS regions was significantly higher than that based on the average genomic region (91 regions, p = 1.2x10-6) while the inverse was not significant (19 regions, p=0.89). Using our BD and SCZ GWAS we calculated polygenic risk scores and identified several significant correlations with: 1) SCZ subphenotypes: negative symptoms (SCZ, p=3.6x10-6) and manic symptoms (BD, p=2x10-5), 2) BD subphenotypes: psychotic features (SCZ p=1.2x10-10, BD p=5.3x10-5) and age of onset (SCZ p=7.9x10-4). Finally, we show that psychotic features in BD has significant SNP-heritability (h2snp=0.15, SE=0.06), and a significant genetic correlation with SCZ (rg=0.34) in addition there is a significant sign test result between SCZ GWAS and a GWAS of BD cases contrasting those with and without psychotic features (p=0.0038, one-side binomial test). For the first time, we have identified specific loci pointing to a potential role of 4 genes (DARS2, ARFGEF2, DCAKD and GATAD2A) that distinguish between BD and SCZ, providing an opportunity to understand the biology contributing to clinical differences of these disorders. Our results provide the best evidence so far of genomic components distinguishing between BD and SCZ that contribute directly to specific symptom dimensions.
1

Multi-Site Statistical Mapping of Along-Tract Microstructural Abnormalities in Bipolar Disorder with Diffusion MRI Tractometry

Leila Nabulsi et al.Aug 21, 2023
+13
G
B
L
Abstract Investigating alterations in brain circuitry associated with bipolar disorder (BD) may offer a valuable approach to discover brain biomarkers for genetic and interventional studies of the disorder and related mental illnesses. Some diffusion MRI studies report evidence of microstructural abnormalities in white matter regions of interest, but we lack a fine-scale spatial mapping of brain microstructural differences along tracts in BD. We also lack large-scale studies that integrate tractometry data from multiple sites, as larger datasets can greatly enhance power to detect subtle effects and assess whether effects replicate across larger international datasets. In this multisite diffusion MRI study, we used BUndle ANalytics (BUAN, Chandio 2020), a recently developed analytic approach for tractography, to extract, map, and visualize profiles of microstructural abnormalities on 3D models of fiber tracts in 148 participants with BD and 259 healthy controls from 6 independent scan sites. Modeling site differences as random effects, we investigated along-tract white matter (WM) microstructural differences between diagnostic groups. QQ plots showed that group differences were gradually enhanced as more sites were added. Using the BUAN pipeline, BD was associated with lower mean fractional anisotropy (FA) in fronto-limbic, interhemispheric, and posterior pathways; higher FA was also noted in posterior bundles, relative to controls. By integrating tractography and anatomical information, BUAN effectively captures unique effects along white matter (WM) tracts, providing valuable insights into anatomical variations that may assist in the classification of diseases.