TJ
Tao Jiang
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
2
h-index:
64
/
i10-index:
250
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Branched-Chain Amino Acid Metabolic Reprogramming Orchestrates Drug Resistance to EGFR Tyrosine Kinase Inhibitors

Yuetong Wang et al.May 15, 2019
+27
D
S
Y
SUMMARY Drug resistance is a significant hindrance to effective cancer treatment. Although resistance mechanisms of epidermal growth factor receptor (EGFR)-mutant cancer cells to lethal EGFR tyrosine kinase inhibitors (TKI) treatment have been investigated intensively, how cancer cells orchestrate adaptive response under sublethal drug challenge remains largely unknown. Here we find that 2-hour sublethal TKI treatment elicits a transient drug-tolerant state in EGFR-mutant lung cancer cells. Continuous sublethal treatment reinforces this tolerance and eventually establishes long-term TKI resistance. This adaptive process involves H3K9 demethylation-mediated epigenetic upregulation of branched-chain amino acid aminotransferase 1 (BCAT1) and subsequent metabolic reprogramming, which promotes TKI resistance through attenuating reactive oxygen species (ROS) accumulation. Combinational treatment with TKI and ROS-inducing reagents overcomes this drug resistance in preclinical mouse models. Clinical information analyses support the correlation of BCAT1 expression with EGFR TKI response. Collectively, our findings reveal the importance of epigenetically regulated BCAT1-engaged metabolism reprogramming in TKI resistance in lung cancer. HIGHLIGHTS Sublethal EGFR TKI treatment induces transient drug-tolerant state and long-term resistance in EGFR-mutant lung cancer cells Epigenetically regulated BCAT1-mediated metabolic reprogramming orchestrates EGFR TKI-induced drug resistance Combinational treatment with TKI and ROS-inducing agents overcomes the drug resistance induced by EGFR TKI treatment
0
Citation2
0
Save
5

Targeting EGFR in glioblastoma with a novel brain-penetrant small molecule EGFR-TKI

Jing Ni et al.Jan 9, 2021
+5
Q
Y
J
Summary Epidermal growth factor receptor (EGFR) is mutated or amplified in a majority of glioblastoma (GBM), and its mutation and focal amplification correlate with a more aggressive disease course. However, EGFR-directed tyrosine kinase inhibitors (TKIs) tested to date have yielded minimal clinical benefit. Here, we report a novel covalent-binding EGFR-TKI, CM93, as a potential drug to target adult GBMs with aberrant EGFR. CM93 has extraordinary brain exposure, with a brain-to-plasma ratio greater than 20-fold at estimated steady state. While all approved EGFR-TKIs are subject to extensive efflux transporter activity, CM93 does not inhibit the P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) efflux transporters in Caco-2 cells at expected clinically relevant plasma concentrations. Equally, CM93 demonstrates moderate absorption and permeation in Caco-2 cell monolayers with efflux ratios < 2, suggesting that it is not likely a substrate of an efflux transporter. Collectively, these in vitro data may account for the dramatic increase in brain exposure over plasma as noted above. Pre-clinical efficacy studies showed that CM93 is more effective than other EGFR-TKIs in blocking the proliferation of GBM tumor cells from both patient-derived and cultured human GBM cell lines with EGFR amplification and/or EGFRvIII mutation. In addition, CM93 administered as a single agent was able to attenuate the growth of orthotopic U251-EGFRvIII xenografts and extend the survival of tumor-bearing mice in a dose-dependent manner. Moreover, CM93 inhibited EGFR phosphorylation in GBM tumors derived from a novel genetically-engineered mouse (GEM) model of GBM with EGFRvIII expression both in vitro and in vivo . CM93 also extended the survival of mice bearing orthotopic allografts of GBM. Notably, mice maintained stable body weight during treatments with increasing doses of CM93 up to 75 mg/kg per day. Together, these data suggest that CM93 is a potential EGFR-TKI well suited for the treatment of adult GBM with mutant EGFR.
0

CM93, a novel covalent small molecule inhibitor targeting lung cancer with mutant EGFR

Qiwei Wang et al.Mar 11, 2020
+4
J
T
Q
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have provided successful targeted therapies for patients with EGFR-mutant non-small-cell lung cancer (NSCLC). Osimertinib (AZD9291) is a third-generation irreversible EGFR TKI that has received regulatory approval for overcoming resistance mediated by the EGFR T790M mutation as well as a first-line treatment targeting EGFR activating mutations. However, a significant fraction of patients cannot tolerate the adverse effect associated with AZD9291. In addition, brain metastases are common in patients with NSCLN and remain a major clinical challenge. Here, we report the development of a novel third-generation EGFR TKI, CM93. Compared to AZD9291, CM93 exhibits improved lung cancer targeting and brain penetration and has demonstrated promising antitumor efficacy in mouse models of both EGFR-mutant NSCLC orthotopic and brain metastases. In addition, we find that CM93 confers superior safety benefits in mice. Our results demonstrate that further evaluations of CM93 in clinical studies for patients with EGFR-mutant NSCLC and brain metastases are warranted.
1

Lysine vitcylation is a novel vitamin C-derived protein modification that enhances STAT1-mediated immune response

Xiadi He et al.Jun 27, 2023
+19
J
X
X
Vitamin C (vitC) is a vital nutrient for health and also used as a therapeutic agent in diseases such as cancer. However, the mechanisms underlying vitC's effects remain elusive. Here we report that vitC directly modifies lysine without enzymes to form vitcyl-lysine, termed "vitcylation", in a dose-, pH-, and sequence-dependent manner across diverse proteins in cells. We further discover that vitC vitcylates K298 site of STAT1, which impairs its interaction with the phosphatase PTPN2, preventing STAT1 Y701 dephosphorylation and leading to increased STAT1-mediated IFN pathway activation in tumor cells. As a result, these cells have increased MHC/HLA class-I expression and activate immune cells in co-cultures. Tumors collected from vitC-treated tumor-bearing mice have enhanced vitcylation, STAT1 phosphorylation and antigen presentation. The identification of vitcylation as a novel PTM and the characterization of its effect in tumor cells opens a new avenue for understanding vitC in cellular processes, disease mechanisms, and therapeutics.