PH
Philip Harrison
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
17
h-index:
14
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Learning to see colours: generating biologically relevant fluorescent labels from bright-field images

Håkan Wieslander et al.Jan 19, 2021
+2
E
A
H
Abstract Fluorescence microscopy, which visualizes cellular components with fluorescent stains, is an invaluable method in image cytometry. From these images various cellular features can be extracted. Together these features form phenotypes that can be used to determine effective drug therapies, such as those based on nanomedicines. Unfortunately, fluorescence microscopy is time-consuming, expensive, labour intensive, and toxic to the cells. Bright-field images lack these downsides but also lack the clear contrast of the cellular components and hence are difficult to use for downstream analysis. Generating the fluorescence images directly from bright-field images would get the best of both worlds, but can be very challenging to do for poorly visible cellular structures in the bright-field images. To tackle this problem deep learning models were explored to learn the mapping between bright-field and fluorescence images to enable virtual staining for adipocyte cell images. The models were tailored for each imaging channel, paying particular attention to the various challenges in each case, and those with the highest fidelity in extracted cell-level features were selected. The solutions included utilizing privileged information for the nuclear channel, and using image gradient information and adversarial training for the lipids channel. The former resulted in better morphological and count features and the latter resulted in more faithfully captured defects in the lipids, which are key features required for downstream analysis of these channels.
5

Combining molecular and cell painting image data for mechanism of action prediction

Guangyan Tian et al.Oct 7, 2022
+2
A
P
G
Abstract The mechanism of action (MoA) of a compound describes the biological interaction through which it produces a pharmacological effect. Multiple data sources can be used for the purpose of predicting MoA, including compound structural information, and various assays, such as those based on cell morphology, transcriptomics and metabolomics. In the present study we explored the benefits and potential additive/synergistic effects of combining structural information, in the form of Morgan fingerprints, and morphological information, in the form of five-channel Cell Painting image data. For a set of 10 well represented MoA classes, we compared the performance of deep learning models trained on the two datasets separately versus a model trained on both datasets simultaneously. On a held-out test set we obtained a macro-averaged F1 score of 0.58 when training on only the structural data, 0.81 when training on only the image data, and 0.92 when training on both together. Thus indicating clear additive/synergistic effects and highlighting the benefit of integrating multiple data sources for MoA prediction.
5
Citation6
0
Save
3

Is brightfield all you need for mechanism of action prediction?

Ankit Gupta et al.Oct 13, 2022
+8
P
P
A
Abstract Fluorescence staining techniques, such as Cell Painting, together with fluorescence microscopy have proven invaluable for visualizing and quantifying the effects that drugs and other perturbations have on cultured cells. However, fluorescence microscopy is expensive, time-consuming, and labor-intensive, and the stains applied can be cytotoxic, interfering with the activity under study. The simplest form of microscopy, brightfield microscopy, lacks these downsides, but the images produced have low contrast and the cellular compartments are difficult to discern. Nevertheless, by harnessing deep learning, these brightfield images may still be sufficient for various predictive purposes. In this study, we compared the predictive performance of models trained on fluorescence images to those trained on brightfield images for predicting the mechanism of action (MoA) of different drugs. We also extracted CellProfiler features from the fluorescence images and used them to benchmark the performance. Overall, we found comparable and correlated predictive performance for the two imaging modalities. This is promising for future studies of MoAs in time-lapse experiments.
0

Transfer learning with deep convolutional neural networks for classifying cellular morphological changes

Alexander Kensert et al.Jun 14, 2018
O
P
P
A
Quantification and identification of cellular phenotypes from high content microscopy images have proven to be very useful for understanding biological activity in response to different drug treatments. The traditional approach has been to use classical image analysis to quantify changes in cell morphology, which requires several non-trivial and independent analysis steps. Recently convolutional neural networks have emerged as a compelling alternative, offering good predictive performance and the possibility to replace traditional workflows with a single network architecture. In this study we applied the pre-trained deep convolutional neural networks ResNet50, InceptionV3 and InceptionResnetV2 to predict cell mechanisms of action in response to chemical perturbations for two cell profiling datasets from the Broad Bioimage Benchmark Collection. These networks were pre-trained on ImageNet enabling much quicker model training. We obtain higher predictive accuracy than previously reported, between 95 and 97% based on 'leave-one-compound-out' cross-validation. The ability to quickly and accurately distinguish between different cell morphologies from a scarce amount of labelled data illustrates the combined benefit of transfer learning and deep convolutional neural networks for interrogating cell-based images.
0

Deep learning models for lipid-nanoparticle-based drug delivery

Philip Harrison et al.Apr 7, 2020
+5
A
H
P
Large-scale time-lapse microscopy experiments are useful to understand delivery and expression in RNA-based therapeutics. The resulting data has high dimensionality and high (but sparse) information content, making it challenging and costly to store and process. Early prediction of experimental outcome enables intelligent data management and decision making. We start from time-lapse data of HepG2 cells exposed to lipid-nanoparticles loaded with mRNA for expression of green fluorescent protein (GFP). We hypothesize that it is possible to predict if a cell will express GFP or not based on cell morphology at time-points prior to GFP expression. Here we present results on per-cell classification (GFP expression/no GFP expression) and regression (level of GFP expression) using three different approaches. In the first approach we use a convolutional neural network extracting per-cell features at each time point. We then utilize the same features combined with: a long-short-term memory (LSTM) network encoding temporal dynamics (approach 2); and time-series feature extraction using the python package tsfresh followed by principal component analysis and gradient boosting machines (approach 3), to reach a final classification or regression result. Application of the three approaches to a previously unanalyzed test set of cells showed good predictive performance of all three approaches but that accounting for the temporal dynamics via LSTMs or tsfresh led to significantly improved performance. The predictions made by the LSTM and tsfresh applications were not significantly different. The results highlight the benefit of accounting for temporal dynamics when studying drug delivery using high content imaging.
0

Rapid development of cloud-native intelligent data pipelines for scientific data streams using the HASTE Toolkit

Ben Blamey et al.Sep 14, 2020
+8
M
S
B
Abstract This paper introduces the HASTE Toolkit , a cloud-native software toolkit capable of partitioning data streams in order to prioritize usage of limited resources. This in turn enables more efficient data-intensive experiments. We propose a model that introduces automated, autonomous decision making in data pipelines, such that a stream of data can be partitioned into a tiered or ordered data hierarchy . Importantly, the partitioning is online and based on data content rather than a priori metadata. At the core of the model are interestingness functions and policies . Interestingness functions assign a quantitative measure of interestingness to a single data object in the stream, an interestingness score. Based on this score, a policy guides decisions on how to prioritize computational resource usage for a given object. The HASTE Toolkit is a collection of tools to adapt data stream processing to this pipeline model. The result is smart data pipelines capable of effective or even optimal use of e.g. storage, compute and network bandwidth, to support experiments involving rapid processing of scientific data characterized by large individual data object sizes. We demonstrate the proposed model and our toolkit through two microscopy imaging case studies, each with their own interestingness functions, policies, and data hierarchies. The first deals with a high content screening experiment, where images are analyzed in an on-premise container cloud with the goal of prioritizing the images for storage and subsequent computation. The second considers edge processing of images for upload into the public cloud for a real-time control loop for a transmission electron microscope. Key Points We propose a pipeline model for building intelligent pipelines for streams, accounting for actual information content in data rather than a priori metadata, and present the HASTE Toolkit, a cloud-native software toolkit for supporting rapid development according to the proposed model. We demonstrate how the HASTE Toolkit enables intelligent resource optimization in two image analysis case studies based on a) high-content imaging and b) transmission electron microscopy. We highlight the challenges of storage, processing and transfer in streamed high volume, high velocity scientific data for both cloud and cloud-edge use cases.