DG
David Gaveau
Author with expertise in Impact of Oil Palm Expansion on Biodiversity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(94% Open Access)
Cited by:
2,650
h-index:
41
/
i10-index:
63
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Trees, forests and water: Cool insights for a hot world

David Ellison et al.Feb 9, 2017
+19
B
C
D
Forest-driven water and energy cycles are poorly integrated into regional, national, continental and global decision-making on climate change adaptation, mitigation, land use and water management. This constrains humanity’s ability to protect our planet’s climate and life-sustaining functions. The substantial body of research we review reveals that forest, water and energy interactions provide the foundations for carbon storage, for cooling terrestrial surfaces and for distributing water resources. Forests and trees must be recognized as prime regulators within the water, energy and carbon cycles. If these functions are ignored, planners will be unable to assess, adapt to or mitigate the impacts of changing land cover and climate. Our call to action targets a reversal of paradigms, from a carbon-centric model to one that treats the hydrologic and climate-cooling effects of trees and forests as the first order of priority. For reasons of sustainability, carbon storage must remain a secondary, though valuable, by-product. The effects of tree cover on climate at local, regional and continental scales offer benefits that demand wider recognition. The forest- and tree-centered research insights we review and analyze provide a knowledge-base for improving plans, policies and actions. Our understanding of how trees and forests influence water, energy and carbon cycles has important implications, both for the structure of planning, management and governance institutions, as well as for how trees and forests might be used to improve sustainability, adaptation and mitigation efforts.
0
Paper
Citation874
0
Save
0

Four Decades of Forest Persistence, Clearance and Logging on Borneo

David Gaveau et al.Jul 16, 2014
+8
E
S
D
The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km−2, and the lowest density in Brunei, at 0.18 km km−2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.
0
Paper
Citation412
0
Save
0

Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo

David Gaveau et al.Sep 8, 2016
+5
H
D
D
Abstract New plantations can either cause deforestation by replacing natural forests or avoid this by using previously cleared areas. The extent of these two situations is contested in tropical biodiversity hotspots where objective data are limited. Here, we explore delays between deforestation and the establishment of industrial tree plantations on Borneo using satellite imagery. Between 1973 and 2015 an estimated 18.7 Mha of Borneo’s old-growth forest were cleared (14.4 Mha and 4.2 Mha in Indonesian and Malaysian Borneo). Industrial plantations expanded by 9.1 Mha (7.8 Mha oil-palm; 1.3 Mha pulpwood). Approximately 7.0 Mha of the total plantation area in 2015 (9.2 Mha) were old-growth forest in 1973, of which 4.5–4.8 Mha (24–26% of Borneo-wide deforestation) were planted within five years of forest clearance (3.7–3.9 Mha oil-palm; 0.8–0.9 Mha pulpwood). This rapid within-five-year conversion has been greater in Malaysia than in Indonesia (57–60% versus 15–16%). In Indonesia, a higher proportion of oil-palm plantations was developed on already cleared degraded lands (a legacy of recurrent forest fires). However, rapid conversion of Indonesian forests to industrial plantations has increased steeply since 2005. We conclude that plantation industries have been the principle driver of deforestation in Malaysian Borneo over the last four decades. In contrast, their role in deforestation in Indonesian Borneo was less marked, but has been growing recently. We note caveats in interpreting these results and highlight the need for greater accountability in plantation development.
0
Paper
Citation391
0
Save
0

Land-cover changes predict steep declines for the Sumatran orangutan ( Pongo abelii )

Serge Wich et al.Mar 4, 2016
+9
M
I
S
Positive news about Sumatran orangutans is rare. The species is critically endangered because of forest loss and poaching, and therefore, determining the impact of future land-use change on this species is important. To date, the total Sumatran orangutan population has been estimated at 6600 individuals. On the basis of new transect surveys, we estimate a population of 14,613 in 2015. This higher estimate is due to three factors. First, orangutans were found at higher elevations, elevations previously considered outside of their range and, consequently, not surveyed previously. Second, orangutans were found more widely distributed in logged forests. Third, orangutans were found in areas west of the Toba Lake that were not previously surveyed. This increase in numbers is therefore due to a more wide-ranging survey effort and is not indicative of an increase in the orangutan population in Sumatra. There are evidently more Sumatran orangutans remaining in the wild than we thought, but the species remains under serious threat. Current scenarios for future forest loss predict that as many as 4500 individuals could vanish by 2030. Despite the positive finding that the population is double the size previously estimated, our results indicate that future deforestation will continue to be the cause of rapid declines in orangutan numbers. Hence, we urge that all developmental planning involving forest loss be accompanied by appropriate environmental impact assessments conforming with the current national and provincial legislations, and, through these, implement specific measures to reduce or, better, avoid negative impacts on forests where orangutans occur.
0
Paper
Citation133
0
Save
2

Reconciling Forest Conservation and Logging in Indonesian Borneo

David Gaveau et al.Aug 14, 2013
+12
D
M
D
Combining protected areas with natural forest timber concessions may sustain larger forest landscapes than is possible via protected areas alone. However, the role of timber concessions in maintaining natural forest remains poorly characterized. An estimated 57% (303,525 km²) of Kalimantan's land area (532,100 km²) was covered by natural forest in 2000. About 14,212 km² (4.7%) had been cleared by 2010. Forests in oil palm concessions had been reduced by 5,600 km² (14.1%), while the figures for timber concessions are 1,336 km² (1.5%), and for protected forests are 1,122 km² (1.2%). These deforestation rates explain little about the relative performance of the different land use categories under equivalent conversion risks due to the confounding effects of location. An estimated 25% of lands allocated for timber harvesting in 2000 had their status changed to industrial plantation concessions in 2010. Based on a sample of 3,391 forest plots (1×1 km; 100 ha), and matching statistical analyses, 2000-2010 deforestation was on average 17.6 ha lower (95% C.I.: -22.3 ha- -12.9 ha) in timber concession plots than in oil palm concession plots. When location effects were accounted for, deforestation rates in timber concessions and protected areas were not significantly different (Mean difference: 0.35 ha; 95% C.I.: -0.002 ha-0.7 ha). Natural forest timber concessions in Kalimantan had similar ability as protected areas to maintain forest cover during 2000-2010, provided the former were not reclassified to industrial plantation concessions. Our study indicates the desirability of the Government of Indonesia designating its natural forest timber concessions as protected areas under the IUCN Protected Area Category VI to protect them from reclassification.
2
Paper
Citation130
0
Save
0

Alternative futures for Borneo show the value of integrating economic and conservation targets across borders

Rebecca Runting et al.Apr 14, 2015
+9
N
E
R
Abstract Balancing economic development with international commitments to protect biodiversity is a global challenge. Achieving this balance requires an understanding of the possible consequences of alternative future scenarios for a range of stakeholders. We employ an integrated economic and environmental planning approach to evaluate four alternative futures for the mega-diverse island of Borneo. We show what could be achieved if the three national jurisdictions of Borneo coordinate efforts to achieve their public policy targets and allow a partial reallocation of planned land uses. We reveal the potential for Borneo to simultaneously retain ∼50% of its land as forests, protect adequate habitat for the Bornean orangutan ( Pongo pygmaeus ) and Bornean elephant ( Elephas maximus borneensis ), and achieve an opportunity cost saving of over US$43 billion. Such coordination would depend on enhanced information sharing and reforms to land-use planning, which could be supported by the increasingly international nature of economies and conservation efforts.
0
Paper
Citation100
0
Save
1

Denial of long‐term issues with agriculture on tropical peatlands will have devastating consequences

Lahiru Wijedasa et al.Jan 10, 2017
+136
M
J
L
The first International Peat Congress (IPC) held in the tropics – in Kuching (Malaysia) – brought together over 1000 international peatland scientists and industrial partners from across the world (‘International Peat Congress with over 1000 participants!’, 2016). The congress covered all aspects of peatland ecosystems and their management, with a strong focus on the environmental, societal and economic challenges associated with contemporary large-scale agricultural conversion of tropical peat. However, recent encouraging developments towards better management of tropical peatlands have been undermined by misleading newspaper headlines and statements first published during the conference. Articles in leading regional newspapers (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b; Wong, 2016) widely read across the region portrayed a general consensus, in summary of the conference, that current agricultural practices in peatland areas, such as oil palm plantations, do not have a negative impact on the environment. This view is not shared by many scientists or supported by the weight of evidence that business-as-usual management is not sustainable for tropical peatland agriculture. Peer-reviewed scientific studies published over the last 19 years, as reflected in the Intergovernmental Panel on Climate Change (IPCC) Wetland Supplement on greenhouse gas inventories, affirm that drained tropical peatlands lose considerable amounts of carbon at high rates (Drösler et al., 2014). Tropical peat swamp forests have sequestered carbon for millennia, storing a globally significant reservoir below ground in the peat (Page et al., 2011; Dommain et al., 2014). However, contemporary agriculture techniques on peatlands heavily impact this system through land clearance, drainage and fertilization, a process that too often involves fire. Along with biodiversity losses driven by deforestation (Koh et al., 2011; Posa et al., 2011; Giam et al., 2012), the carbon stored in drained peatlands is rapidly lost through oxidation, dissolution and fire (Couwenberg et al., 2009; Hirano et al., 2012; Ramdani & Hino, 2013; Schrier-Uijl et al., 2013; Carlson et al., 2015; Warren et al., 2016). Tropical peat fires are a major contributor to global greenhouse gas emissions and produce transboundary haze causing significant impacts on human health, regional economies and ecosystems (Page et al., 2002; Marlier et al., 2012; Jaafar & Loh, 2014; Chisholm et al., 2016; Huijnen et al., 2016; Stockwell et al., 2016). With future El-Niño events predicted to increase in frequency and severity (Cai et al., 2014) and with fire prevalence now decoupled from drought years (Gaveau et al., 2014), future large-scale fire and haze events are imminent given the extensive areas of now-drained fire-prone drained peatlands (Kettridge et al., 2015; Turetsky et al., 2015; Page & Hooijer, 2016). In reality, just how much of the estimated 69 gigatonnes of carbon (Page et al., 2011) stored in South-East Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wösten et al., 1997; Melling et al., 2008; Hooijer et al., 2012; Evers et al., 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become undrainable and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer et al., 2015a,b; Sumarga et al., 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of ‘long-term sustainability of tropical peatland agriculture’. A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is ‘mined’ to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, we must accept that ongoing peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimize the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments, is needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made ‘sustainable’, and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainable peatland management have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondelēz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016, Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwood companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations (Lim et al., 2012). However, the denial of the empirical basis calling for improved peatland management remains persistent in influential policy spaces, as illustrated by the articles reporting on the conference (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b). The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommain et al., 2016; Mizuno et al., 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions (International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners. Open access facilitated by Greifswald Mire Centre and Department of Forestry Sciences, University of Helsinki.
1
Paper
Citation99
0
Save
0

Understanding the Impacts of Land-Use Policies on a Threatened Species: Is There a Future for the Bornean Orang-utan?

Serge Wich et al.Nov 7, 2012
+32
N
D
S
The geographic distribution of Bornean orang-utans and its overlap with existing land-use categories (protected areas, logging and plantation concessions) is a necessary foundation to prioritize conservation planning. Based on an extensive orang-utan survey dataset and a number of environmental variables, we modelled an orang-utan distribution map. The modelled orang-utan distribution map covers 155,106 km(2) (21% of Borneo's landmass) and reveals four distinct distribution areas. The most important environmental predictors are annual rainfall and land cover. The overlap of the orang-utan distribution with land-use categories reveals that only 22% of the distribution lies in protected areas, but that 29% lies in natural forest concessions. A further 19% and 6% occurs in largely undeveloped oil palm and tree plantation concessions, respectively. The remaining 24% of the orang-utan distribution range occurs outside of protected areas and outside of concessions. An estimated 49% of the orang-utan distribution will be lost if all forest outside of protected areas and logging concessions is lost. To avoid this potential decline plantation development in orang-utan habitats must be halted because it infringes on national laws of species protection. Further growth of the plantation sector should be achieved through increasing yields in existing plantations and expansion of new plantations into areas that have already been deforested. To reach this goal a large scale island-wide land-use masterplan is needed that clarifies which possible land uses and managements are allowed in the landscape and provides new standardized strategic conservation policies. Such a process should make much better use of non-market values of ecosystem services of forests such as water provision, flood control, carbon sequestration, and sources of livelihood for rural communities. Presently land use planning is more driven by vested interests and direct and immediate economic gains, rather than by approaches that take into consideration social equity and environmental sustainability.
0
Paper
Citation96
0
Save
1

Global Demand for Natural Resources Eliminated More Than 100,000 Bornean Orangutans

Maria Voigt et al.Mar 1, 2018
+38
M
S
M
Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1Gibson L. Lee T.M. Koh L.P. Brook B.W. Gardner T.A. Barlow J. Peres C.A. Bradshaw C.J.A. Laurance W.F. Lovejoy T.E. Sodhi N.S. Primary forests are irreplaceable for sustaining tropical biodiversity.Nature. 2011; 478: 378-381Crossref PubMed Scopus (1338) Google Scholar, 2Harrison R.D. Sreekar R. Brodie J.F. Brook S. Luskin M. O’Kelly H. Rao M. Scheffers B. Velho N. Impacts of hunting on tropical forests in Southeast Asia.Conserv. Biol. 2016; 30: 972-981Crossref PubMed Scopus (143) Google Scholar]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3Hansen M.C. Potapov P.V. Moore R. Hancher M. Turubanova S.A. Tyukavina A. Thau D. Stehman S.V. Goetz S.J. Loveland T.R. et al.High-resolution global maps of 21st-century forest cover change.Science. 2013; 342: 850-853Crossref PubMed Scopus (6301) Google Scholar, 4Gaveau D.L.A. Sloan S. Molidena E. Yaen H. Sheil D. Abram N.K. Ancrenaz M. Nasi R. Quinones M. Wielaard N. Meijaard E. Four decades of forest persistence, clearance and logging on Borneo.PLoS ONE. 2014; 9: e101654Crossref PubMed Scopus (310) Google Scholar, 5Tyukavina A. Hansen M.C. Potapov P.V. Krylov A.M. Goetz S.J. Pan-tropical hinterland forests: mapping minimally disturbed forests.Glob. Ecol. Biogeogr. 2016; 25: 151-163Crossref Scopus (40) Google Scholar], our knowledge about the effects of these changes on wildlife is much more sparse [6Dirzo R. Young H.S. Galetti M. Ceballos G. Isaac N.J.B. Collen B. Defaunation in the Anthropocene.Science. 2014; 345: 401-406Crossref PubMed Scopus (2180) Google Scholar, 7Peres C.A. Barlow J. Laurance W.F. Detecting anthropogenic disturbance in tropical forests.Trends Ecol. Evol. 2006; 21: 227-229Abstract Full Text Full Text PDF PubMed Scopus (170) Google Scholar]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8Meijaard E. Buchori D. Hadiprakarsa Y. Utami-Atmoko S.S. Nurcahyo A. Tjiu A. Prasetyo D. Nardiyono Christie L. Ancrenaz M. et al.Quantifying killing of orangutans and human-orangutan conflict in Kalimantan, Indonesia.PLoS ONE. 2011; 6: e27491Crossref PubMed Scopus (107) Google Scholar, 9Davis J.T. Mengersen K. Abram N.K. Ancrenaz M. Wells J.A. Meijaard E. It’s not just conflict that motivates killing of orangutans.PLoS ONE. 2013; 8: e75373Crossref PubMed Scopus (49) Google Scholar, 10Abram N.K. Meijaard E. Wells J.A. Ancrenaz M. Pellier A.-S. Runting R.K. Gaveau D. Wich S. Nardiyono Tjiu A. et al.Mapping perceptions of species’ threats and population trends to inform conservation efforts: the Bornean orangutan case study.Divers. Distrib. 2015; 21: 487-499Crossref Scopus (32) Google Scholar]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11Santika T. Ancrenaz M. Wilson K.A. Spehar S. Abram N. Banes G.L. Campbell-Smith G. Curran L. d’Arcy L. Delgado R.A. et al.First integrative trend analysis for a great ape species in Borneo.Sci. Rep. 2017; 7: 4839Crossref PubMed Scopus (42) Google Scholar]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12Meijaard E. Wich S. Ancrenaz M. Marshall A.J. Not by science alone: why orangutan conservationists must think outside the box.Ann. N Y Acad. Sci. 2012; 1249: 29-44Crossref PubMed Scopus (62) Google Scholar].Video AbstracteyJraWQiOiI4ZjUxYWNhY2IzYjhiNjNlNzFlYmIzYWFmYTU5NmZmYyIsImFsZyI6IlJTMjU2In0.eyJzdWIiOiI3NzVlYzU2MTRjYjE4ODA4MjVhMDA4YWJmYWYyNDFhNCIsImtpZCI6IjhmNTFhY2FjYjNiOGI2M2U3MWViYjNhYWZhNTk2ZmZjIiwiZXhwIjoxNjc5NDU5NDc0fQ.DEdrG_57cF2PVxBVL7RCtHsBb34aDZwKkCWA2ONCYwmMex4IeydL84VKN4SlSZtNubJ2oa5mkhGjwUWAVhcBGK88nGsWQESZt_couVkgn4BGMiIDaIZ_fw3dXRO1mh4vukubXw02PSJemxUf8I-5GmdlbrlyPoCIUfW5cMlCojOE29xvPLh9zm-Hadsbt-Eh4ICHu9lc2Q_TAf2Ox8Xb8hmHqSpKZyWUHYHVGLXoWj5ZRFaa2-KxNBaRLqfsuJWzIe_LB6VCed_XDRUUgQaOeyQTi16QSmouceYD-rs3FADDiH8WFxaDFhdH-NnYUngUuz0Oefv7UjpctrSfxBhXyg(mp4, (42.59 MB) Download video
1
Paper
Citation96
0
Save
0

High-resolution global map of smallholder and industrial closed-canopy oil palm plantations

Adrià Descals et al.Mar 24, 2021
+3
E
S
A
Abstract. Oil seed crops, especially oil palm, are among the most rapidly expanding agricultural land uses, and their expansion is known to cause significant environmental damage. Accordingly, these crops often feature in public and policy debates which are hampered or biased by a lack of accurate information on environmental impacts. In particular, the lack of accurate global crop maps remains a concern. Recent advances in deep-learning and remotely sensed data access make it possible to address this gap. We present a map of closed-canopy oil palm (Elaeis guineensis) plantations by typology (industrial versus smallholder plantations) at the global scale and with unprecedented detail (10 m resolution) for the year 2019. The DeepLabv3+ model, a convolutional neural network (CNN) for semantic segmentation, was trained to classify Sentinel-1 and Sentinel-2 images onto an oil palm land cover map. The characteristic backscatter response of closed-canopy oil palm stands in Sentinel-1 and the ability of CNN to learn spatial patterns, such as the harvest road networks, allowed the distinction between industrial and smallholder plantations globally (overall accuracy =98.52±0.20 %), outperforming the accuracy of existing regional oil palm datasets that used conventional machine-learning algorithms. The user's accuracy, reflecting commission error, in industrial and smallholders was 88.22 ± 2.73 % and 76.56 ± 4.53 %, and the producer's accuracy, reflecting omission error, was 75.78 ± 3.55 % and 86.92 ± 5.12 %, respectively. The global oil palm layer reveals that closed-canopy oil palm plantations are found in 49 countries, covering a mapped area of 19.60 Mha; the area estimate was 21.00 ± 0.42 Mha (72.7 % industrial and 27.3 % smallholder plantations). Southeast Asia ranks as the main producing region with an oil palm area estimate of 18.69 ± 0.33 Mha or 89 % of global closed-canopy plantations. Our analysis confirms significant regional variation in the ratio of industrial versus smallholder growers, but it also confirms that, from a typical land development perspective, large areas of legally defined smallholder oil palm resemble industrial-scale plantings. Since our study identified only closed-canopy oil palm stands, our area estimate was lower than the harvested area reported by the Food and Agriculture Organization (FAO), particularly in West Africa, due to the omission of young and sparse oil palm stands, oil palm in nonhomogeneous settings, and semi-wild oil palm plantations. An accurate global map of planted oil palm can help to shape the ongoing debate about the environmental impacts of oil seed crop expansion, especially if other crops can be mapped to the same level of accuracy. As our model can be regularly rerun as new images become available, it can be used to monitor the expansion of the crop in monocultural settings. The global oil palm layer for the second half of 2019 at a spatial resolution of 10 m can be found at https://doi.org/10.5281/zenodo.4473715 (Descals et al., 2021).
0
Paper
Citation89
0
Save
Load More