SW
Sean Wilson
Author with expertise in Bacterial Physiology and Genetics
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
18
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

An Exhaustive Multiple Knockout Approach to Understanding Cell Wall Hydrolase Function inBacillus subtilis

Sean Wilson et al.Feb 19, 2021
ABSTRACT Most bacteria are surrounded by their cell wall, containing a highly crosslinked protective envelope of peptidoglycan. To grow, bacteria must continuously remodel their wall, inserting new material and breaking old bonds. Bond cleavage is performed by cell wall hydrolases, allowing the wall to expand. Understanding the functions of individual hydrolases has been impeded by their redundancy: single knockouts usually present no phenotype. We used an exhaustive multiple-knockout approach to determine the minimal set of hydrolases required for growth in Bacillus subtilis. We identified 42 candidate hydrolases. Strikingly, we were able to remove all but two of these genes in a single strain; this “Δ40” strain shows only a mild reduction in growth rate, indicating that none of the 40 hydrolases are necessary for growth. The Δ40 strain does not detectably shed old wall, suggesting that turnover is not essential for growth. The remaining hydrolases in the Δ40 strain are LytE and CwlO, previously shown to be synthetically lethal. Either can be removed in Δ40, indicating that either hydrolase alone is sufficient for cell growth. Screening of environmental conditions and biochemistry revealed that LytE activity is inhibited by Mg2+ and that RlpA-like proteins may stimulate LytE activity. Together, these results suggest that the only essential function of cell wall hydrolases in B. subtilis is to enable cell growth by expanding the wall and that LytE or CwlO alone is sufficient for this function. These experiments introduce the Δ40 strain as a tool to study hydrolase activity and regulation in B. subtilis. IMPORTANCE In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall – cell wall hydrolases – has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the Δ40 strain is a research tool to characterize hydrolases, using it to identify 3 ‘helper’ hydrolases that act in certain stress conditions.
1
Citation7
0
Save
0

Cell Diameter inBacillus subtilisis Determined by the Opposing Actions of Two Distinct Cell Wall Synthetic Systems

Michael Dion et al.Aug 16, 2018
Abstract Rod shaped bacteria grow by adding material into their cell wall via the action of two spatially distinct enzymatic systems: The Rod system moves around the cell circumference, while the class A penicillin-binding proteins (aPBPs) are unorganized. To understand how the combined action of these two systems defines bacterial dimensions, we examined how each system affects the growth and width of Bacillus subtilis , as well as the mechanical anisotropy and orientation of material within their sacculi. We find that rod diameter is not determined by MreB, rather it depends on the balance between the systems: The Rod system reduces diameter, while aPBPs increase it. RodA/PBP2A can both thin or widen cells, depending on its levels relative to MreBCD. Increased Rod system activity correlates with an increased density of directional MreB filaments, and a greater fraction of directionally moving PBP2A molecules. This increased circumferential synthesis increases the amount of oriented material within the sacculi, increasing their mechanical anisotropy and reinforcing rod shape. Together, these experiments explain how the combined action of the two main cell wall synthetic systems build rods of different widths, a model that appears generalizable: Escherichia coli containing Rod system mutants show the same relationship between the density of directionally moving MreB filaments and cell width.
0
Citation6
0
Save
1

Cell-envelope synthesis is required for surface-to-mass coupling, which determines dry-mass density in Bacillus subtilis

Yuki Kitahara et al.May 6, 2021
Abstract Cells must increase their volumes in response to biomass growth to maintain intracellular mass density, the ratio of dry mass to cell volume, within physiologically permissive bounds. To increase volume, bacteria enzymatically expand their cell envelopes and insert new envelope material. Recently, we demonstrated that the Gram-negative bacterium Escherichia coli expands cell-surface area rather than volume in proportion to mass. Here, we investigate the regulation of cell-volume growth in the evolutionarily distant Bacillus subtilis . First, we demonstrate that the coupling of surface growth to mass growth is conserved in B. subtilis . Therefore, mass density changes with cell shape at the single-cell level. Interestingly, mass density varies by more than 30% when we systematically change cell width by modulation of cell-wall insertion, without any effect on mass-growth rate. Second, we demonstrate that the coupling of surface- and mass growth is broken if peptidoglycan or membrane synthesis are inhibited. Once transient perturbations are relieved, the surface-to-mass ratio is rapidly restored. In conclusion, we demonstrate that surface-to-mass coupling is a conserved principle for volume regulation in bacteria, and that envelope synthesis provides an important link between surface growth and biomass growth in B. subtilis .
1
Citation2
0
Save
1

The ribbon-helix-helix domain proteins CdrS and CdrL regulate cell division in archaea

Cynthia Darnell et al.Jun 16, 2020
Abstract Precise control of the cell cycle is central to the physiology of all cells. In prior work we demonstrated that archaeal cells maintain a constant size; however, the regulatory mechanisms underlying the cell cycle remain unexplored in this domain of life. Here we use genetics, functional genomics, and quantitative imaging to identify and characterize the novel CdrSL gene regulatory network in a model species of archaea. We demonstrate the central role of these ribbon-helix-helix family transcription factors in the regulation of cell division through specific transcriptional control of the gene encoding FtsZ2, a putative tubulin homolog. Using time lapse fluorescence microscopy in live cells cultivated in microfluidics devices, we further demonstrate that FtsZ2 is required for cell division but not elongation. The cdrS-ftsZ2 locus is highly conserved throughout the archaeal domain, and the central function of CdrS in regulating cell division is conserved across hypersaline adapted archaea. We propose that the CdrSL-FtsZ2 transcriptional network coordinates cell division timing with cell growth in archaea. Importance Healthy cell growth and division are critical for individual organism survival and species long-term viability. However, it remains unknown how cells of the domain Archaea maintain a healthy cell cycle. Understanding archaeal cell cycle is of paramount evolutionary importance given that an archaeal cell was the host of the endosymbiotic event that gave rise to eukaryotes. Here we identify and characterize novel molecular players needed for regulating cell division in archaea. These molecules dictate the timing of cell septation, but are dispensable for growth between divisions. Timing is accomplished through transcriptional control of the cell division ring. Our results shed light on mechanisms underlying the archaeal cell cycle, which has thus far remained elusive.