AD
Asim Debnath
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
744
h-index:
48
/
i10-index:
86
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors

Shuwen Liu et al.Mar 1, 2004
BackgroundStudies on the fusion-inhibitory peptides derived from the heptad repeat 1 and 2 (HR1 and HR2) regions of the HIV-1 envelope glycoprotein gp41 provided crucial information on the viral fusogenic mechanism. We used a similar approach to study the fusogenic mechanism of severe-acute-respiratory-syndrome-associated coronavirus (SARS-CoV).MethodsWe tested the inhibitory activity against infection of two sets of peptides corresponding to sequences of SARS-CoV spike protein HR1 and HR2 regions and investigated the interactions between the HR1 and HR2 peptides by surface plasmon resonance, sedimentation equilibration analysis, circular dichroism, native polyacrylamide-gel electrophoresis, size exclusion high-performance liquid chromatography, and computer-aided homology modelling and molecule docking analysis.FindingsOne peptide, CP-1, derived from the HR2 region, inhibited SARS-CoV infection in the micromolar range. CP-1 bound with high affinity to a peptide from the HR1 region, NP-1. CP-1 alone had low -helicity and self-associated to form a trimer in phosphate buffer (pH 7·2). CP-1 and NP-1 mixed in equimolar concentrations formed a six-helix bundle, similar to the fusogenic core structure of HIV-1 gp41.InterpretationAfter binding to the target cell, the transmembrane spike protein might change conformation by association between the HR1 and HR2 regions to form an oligomeric structure, leading to fusion between the viral and target-cell membranes. At the prefusion intermediate state, CP-1 could bind to the HR1 region and interfere with the conformational changes, resulting in inhibition of SARS-CoV fusion with the target cells. CP-1 might be modifiable to increase its anti-SARS-CoV activity and could be further developed as an antiviral agent for treatment or prophylaxis of SARS-CoV infection.
0
Citation507
0
Save
0

Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops

Young Kwon et al.Mar 26, 2012
The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a “ground state” for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from “snapping” into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
0
Citation232
0
Save
5

Stapled peptides based on Human Angiotensin-Converting Enzyme 2 (ACE2) potently inhibit SARS-CoV-2 infection in vitro

Francesca Curreli et al.Aug 25, 2020
Abstract SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as the primary receptor to enter host cells and initiate the infection. The critical binding region of ACE2 is a ∼30 aa long helix. Here we report the design of four stapled peptides based on the ACE2 helix, which is expected to bind to SARS-CoV-2 and prevent the binding of the virus to the ACE2 receptor and disrupt the infection. All stapled peptides showed high helical contents (50-94% helicity). On the contrary, the linear control peptide NYBSP-C showed no helicity (19%). We have evaluated the peptides in a pseudovirus based single-cycle assay in HT1080/ACE2 and human lung cells A549/ACE2, overexpressing ACE2. Three of the four stapled peptides showed potent antiviral activity in HT1080/ACE2 (IC 50 : 1.9 – 4.1 µM) and A549/ACE2 cells (IC 50 : 2.2 – 2.8 µM). The linear peptides NYBSP-C and the double-stapled peptide StRIP16, used as controls, showed no antiviral activity. Most significantly, none of the stapled peptides show any cytotoxicity at the highest dose tested. We also evaluated the antiviral activity of the peptides by infecting Vero E6 cells with the replication-competent authentic SARS-CoV-2 (US_WA-1/2020). NYBSP-1 was the most efficient preventing the complete formation of cytopathic effects (CPEs) at an IC 100 17.2 µM. NYBSP-2 and NYBSP-4 also prevented the formation of the virus-induced CPE with an IC 100 of about 33 µM. We determined the proteolytic stability of one of the most active stapled peptides, NYBSP-4, in human plasma, which showed a half-life (T 1/2 ) of >289 min.
5
Citation3
0
Save
11

Discovery of highly potent small molecule pan-coronavirus fusion inhibitors

Francesca Curreli et al.Jan 18, 2023
ABSTRACT The unprecedented pandemic of COVID-19, caused by a novel coronavirus, SARS-CoV-2, has led to massive human suffering, death, and economic devastation worldwide. The virus is mutating fast to more transmissible and infectious variants. The Delta variant (B.1.617.2), initially identified in India, and the omicron variant (BA.4 and BA.5) have spread worldwide. In addition, recently alarming antibody evasive SARS-CoV-2 subvariants, BQ and XBB, have been reported. These new variants may pose a substantial challenge to controlling the spread of this virus. Therefore, the continued development of novel drugs having pan-coronavirus inhibition to treat and prevent infection of COVID-19 is urgently needed. These drugs will be critically important in dealing with new pandemics that will emerge in the future. We report the discovery of several highly potent small molecule pan-coronavirus inhibitors. One of which, NBCoV63, showed low nM potency against SARS-CoV-2 (IC 50 : 55 nM), SARS-CoV (IC 50 : 59 nM), and MERS-CoV (IC 50 : 75 nM) in pseudovirus-based assays with excellent selectivity indices (SI: as high as > 900) demonstrating its pan-coronavirus inhibition. NBCoV63 showed equally effective antiviral potency against SARS-CoV-2 mutant (D614G) and several variants of concerns (VOCs) such as B.1.617.2 (Delta), B.1.1.529/BA.1 and BA.4/BA.5 (Omicron) and K417T/E484K/N501Y (Gamma). NBCoV63 also showed similar efficacy profiles to Remdesivir against authentic SARS-CoV-2 (Hong Kong strain) and two of its variants (Delta and Omicron) by plaque reduction in Calu3 cells. Additionally, we show that NBCoV63 inhibits virus-mediated cell-to-cell fusion in a dose-dependent manner. Furthermore, the Absorption, distribution, metabolism, and excretion (ADME) data of NBCoV63 demonstrated drug-like properties.
11
Citation2
0
Save
1

Discovery of highly potent pancoronavirus fusion inhibitors that also effectively inhibit COVID-19 variants from the UK (Alpha), South Africa (Beta), and India (Delta)

Francesca Curreli et al.Sep 3, 2021
ABSTRACT We report here the discovery of several highly potent small molecules that showed low nM potency against SARS-CoV (IC 50 : as low as 13 nM), SARS-CoV-2 (IC 50 : as low as 23 nM), and MERS-CoV (IC 50 : as low as 76 nM) in pseudovirus based assays with excellent selectivity indices (SI: as high as > 5000) demonstrating their pancoronavirus inhibition. Some compounds also show 100% inhibition of CPE (IC 100 ) at 1.25 µM against an authentic SARS-CoV-2 (US_WA-1/2020). Furthermore, the most active inhibitors also potently inhibited variants of concerns (VOCs), such as the UK (B.1.1.7), South Africa (B.1.351), and Delta variant (B.1.617.2), originated in India. We confirmed that one of the potent inhibitors binds to the prefusion spike protein trimer of SARS-CoV-2 by SPR. Besides, we showed that they inhibit virus-mediated cell-cell fusion. The ADME data of one of the most active inhibitors, NBCoV1, show drug-like properties. In vivo PK of NBCoV1 in rats demonstrated excellent half-life (t1/2) of 11.3 h, mean resident time (MRT) of 14.2 h, and oral bioavailability. We expect the lead inhibitors to pave the way for further development to preclinical and clinical candidates.