JV
J. Veen
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,242
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice

Chi Eddie et al.Oct 3, 2011
Although peripheral nerves can regenerate after injury, proximal nerve injury in humans results in minimal restoration of motor function. One possible explanation for this is that injury-induced axonal growth is too slow. Heat shock protein 27 (Hsp27) is a regeneration-associated protein that accelerates axonal growth in vitro. Here, we have shown that it can also do this in mice after peripheral nerve injury. While rapid motor and sensory recovery occurred in mice after a sciatic nerve crush injury, there was little return of motor function after sciatic nerve transection, because of the delay in motor axons reaching their target. This was not due to a failure of axonal growth, because injured motor axons eventually fully re-extended into muscles and sensory function returned; rather, it resulted from a lack of motor end plate reinnervation. Tg mice expressing high levels of Hsp27 demonstrated enhanced restoration of motor function after nerve transection/resuture by enabling motor synapse reinnervation, but only within 5 weeks of injury. In humans with peripheral nerve injuries, shorter wait times to decompression surgery led to improved functional recovery, and, while a return of sensation occurred in all patients, motor recovery was limited. Thus, absence of motor recovery after nerve damage may result from a failure of synapse reformation after prolonged denervation rather than a failure of axonal growth.
0
Citation227
0
Save
1

Feeding Neurons Integrate Metabolic and Reproductive States in Mice

Megan Massa et al.Jan 26, 2023
Trade-offs between metabolic and reproductive processes are important for survival, particularly in mammals that gestate their young. Puberty and reproduction, as energetically taxing life stages, are often gated by metabolic availability in animals with ovaries. How the nervous system coordinates these trade-offs is an active area of study. We identify somatostatin neurons of the tuberal nucleus (TNSST) as a node of the feeding circuit that alters feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of TNSST neurons increased food intake across sexes, selective ablation decreased food intake only in female mice during proestrus. Interestingly, this ablation effect was only apparent in animals with a low body mass. Fat transplantation and bioinformatics analysis of TNSST neuronal transcriptomes revealed white adipose as a key modulator of the effects of TNSST neurons on food intake. Together, these studies point to a mechanism whereby TNSST hypothalamic neurons modulate feeding by responding to varying levels of circulating estrogens differentially based on energy stores. This research provides insight into how neural circuits integrate reproductive and metabolic signals, and illustrates how gonadal steroid modulation of neuronal circuits can be context-dependent and gated by metabolic status.
0

Hypothalamic estrogen receptor alpha mediates key side effects of tamoxifen therapy in mice

Z Zhang et al.Sep 21, 2020
Abstract Adjuvant tamoxifen therapy for invasive breast cancer improves patient survival. Unfortunately, long-term treatment comes with side effects that impact health and quality of life, including hot flashes, changes in bone density, and fatigue. Partly due to a lack of proven animal models, the tissues and cell types that mediate these negative side effects are largely unknown. Here we show that mice undergoing a 28-day course of tamoxifen treatment experience dysregulation of core and skin temperature, changes in bone density, and decreased physical activity, recapitulating key aspects of the human physiological response. Single cell RNA sequencing reveals that tamoxifen treatment induces significant and widespread gene expression changes in different cell types of the hypothalamus, most strongly in neurons and ependymal cells. These expression changes are dependent on estrogen receptor alpha (ERα), as conditional knockout of ERα in the hypothalamus ablated or reversed tamoxifen-induced gene expression. Accordingly, ERα-deficient mice do not exhibit changes in thermal regulation, bone density, or movement in response to tamoxifen treatment. These findings provide mechanistic insight into the effects of tamoxifen on the hypothalamus and support a model in which hypothalamic ERα mediates several key side effects of tamoxifen therapy.