KY
Kazuhiro Yamakawa
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
RIKEN Center for Brain Science, Nagoya City University, RIKEN
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
4
h-index:
56
/
i10-index:
152
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Scn1a-GFP transgenic mouse revealed Nav1.1 expression in neocortical pyramidal tract projection neurons

Tetsushi Yamagata et al.Oct 24, 2023
+9
T
I
T
Abstract Expressions of voltage-gated sodium channels Nav1.1 and Nav1.2, encoded by SCN1A and SCN2A genes respectively, have been reported to be mutually exclusive in most brain regions. In juvenile and adult neocortex, Nav1.1 is predominantly expressed in inhibitory neurons while Nav1.2 is in excitatory neurons. Although a distinct subpopulation of layer V (L5) neocortical excitatory neurons were also reported to express Nav1.1, their nature has been uncharacterized. In hippocampus, Nav1.1 has been proposed to be expressed only in inhibitory neurons. By using newly-generated transgenic mouse lines expressing Scn1a promoter-driven green fluorescent protein (GFP), here we confirm the mutually-exclusive expressions of Nav1.1 and Nav1.2 and the absence of Nav1.1 in hippocampal excitatory neurons. We also show that Nav1.1 is expressed in inhibitory and a subpopulation of excitatory neurons not only in L5 but all layers of neocortex. By using neocortical excitatory projection neuron markers including FEZF2 for L5 pyramidal tract (PT) and TBR1 for layer VI (L6) cortico-thalamic (CT) projection neurons, we further show that most L5 PT neurons and a minor subpopulation of layer II/III (L2/3) cortico-cortical (CC) neurons express Nav1.1 while the majority of L6 CT, L5/6 cortico-striatal (CS) and L2/3 CC neurons express Nav1.2. These observations now contribute to the elucidation of pathological neural circuits for diseases such as epilepsies and neurodevelopmental disorders caused by SCN1A and SCN2A mutations.
1
Citation3
0
Save
13

Criticality supports cross-frequency cortical-thalamic information transfer during conscious states

Daniel Toker et al.Oct 24, 2023
+8
H
E
D
Abstract Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication which is present during conscious states but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ / θ / α waves (~1.5-13 Hz) is consistently encoded by the other brain region by high γ waves (~50-100 Hz); moroever, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy- N,N /-dimethyltryptamine (5-MeO-DMT) enhances this interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer are mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.
65

Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment

Hideo Hagihara et al.Oct 24, 2023
+128
S
H
H
Abstract Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2,294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer’s disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.
0

Enhanced cross-modal activation of sensory cortex in mouse models of autism

Ryoma Hattori et al.May 7, 2020
T
K
T
R
Synesthesia is a condition wherein one sense is evoked by another. Recent studies suggested a higher incidence of synesthesia among people with autism. However, the underlying circuit mechanism of the comorbidity remains unknown partly due to lack of animal models. Here, we measured auditory response of primary visual cortex (V1) in mouse models to estimate the mixture level of their senses. We found that the V1 auditory response exhibits bidirectional cross-modal plasticity and depends on the level of GABA-mediated inhibition. Analysis of the V1 auditory response in autistic BTBR strain revealed its contralateral bias as in primary auditory cortex, and the auditory evoked field potential was enhanced at gamma range. Furthermore, early sound-driven spike modulation of V1 was commonly shifted toward enhancement in three different autism models (BTBR, NL3 R451C, SCN1A R1407X). Disruption of excitatory/inhibitory (E/I) circuit balance is prevalent among autistic people and mouse models. Thus, our results suggest that E/I imbalance may be the common circuit dysfunction for both autism and synesthesia.
0

Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals

Yen‐Chen Feng et al.May 6, 2020
+230
L
D
Y
Sequencing-based studies have identified novel risk genes for rare, severe epilepsies and revealed a role of rare deleterious variation in common epilepsies. To identify the shared and distinct ultra-rare genetic risk factors for rare and common epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,364 controls of European ancestry. We focused on three phenotypic groups; the rare but severe developmental and epileptic encephalopathies (DEE), and the commoner phenotypes of genetic generalized epilepsy (GGE) and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy, with the strongest enrichment seen in DEE and the least in NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, while no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEE and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the top associations, including CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study confirms a convergence in the genetics of common and rare epilepsies associated with ultra-rare coding variation and highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology in the largest epilepsy WES study to date.
1

CUX2 deficiency causes facilitation of excitatory synaptic transmission onto hippocampus and increased seizure susceptibility to kainate

Toshimitsu Suzuki et al.Oct 24, 2023
+21
G
T
T
Abstract CUX2 gene encodes a transcription factor that controls neuronal proliferation, dendrite branching and synapse formation, locating at the epilepsy-associated chromosomal region 12q24 that we previously identified by a genome-wide association study (GWAS) in Japanese population. A CUX2 recurrent de novo variant p.E590K has been described in patients with rare epileptic encephalopathies and the gene is a candidate for the locus, however the mutation may not be enough to generate the genome-wide significance in the GWAS and whether CUX2 variants appear in other types of epilepsies and physiopathological mechanisms are remained to be investigated. Here in this study, we conducted targeted sequencings of CUX2, a paralog CUX1 and its short isoform CASP harboring a unique C-terminus on 271 Japanese patients with a variety of epilepsies, and found that multiple CUX2 missense variants, other than the p.E590K, and some CASP variants including a deletion, predominantly appeared in patients with temporal lobe epilepsy (TLE). The CUX2 variants showed abnormal localization in human cell culture analysis. While wild-type CUX2 enhances dendritic arborization in fly neurons, the effect was compromised by some of the variants. Cux2 - and Casp -specific knockout mice both showed high susceptibility to kainate, increased excitatory cell number in the entorhinal cortex, and significant enhancement in glutamatergic synaptic transmission to the hippocampus. CASP and CUX2 proteins physiologically bound to each other and co-expressed in excitatory neurons in brain regions including the entorhinal cortex. These results suggest that CUX2 and CASP variants contribute to the TLE pathology through a facilitation of excitatory synaptic transmission from entorhinal cortex to hippocampus.