Abstract Carotenoid cleavage, catalyzed by CAROTENOID CLEAVAGE DIOXYGENASES (CCDs), provides signaling molecules and precursors of plant hormones. Recently, we showed that zaxinone, a novel apocarotenoid metabolite formed by the CCD Zaxinone Synthase (ZAS), is a growth regulator required for normal rice growth and development. The rice genome encodes three OsZAS homologs, called here OsZAS1b, OsZAS1c , and OsZAS2 , with unknown functions. Here, we investigated the enzymatic activity, expression pattern, and subcellular localization of OsZAS2, and generated and characterized loss-of-function CRISPR/Cas9- Oszas2 mutants. We show that OsZAS2 formed zaxinone in vitro . OsZAS2 is a plastid-localized enzyme mainly expressed in the root cortex under phosphate starvation. Moreover, OsZAS2 expression increased during mycorrhization, specifically in arbuscule-containing cells. Oszas2 mutants contained lower zaxinone content in roots and exhibited reduced root and shoot biomass, less productive tiller, and higher strigolactone (SL) levels. Exogenous zaxinone application repressed SL biosynthesis and partially rescued the growth retardation of Oszas2 mutant. Consistent with the OsZAS2 expression pattern, Oszas2 mutants displayed a lower frequency of AM colonization. In conclusion, OsZAS2 encodes a further zaxinone-forming enzyme that determines rice growth and architecture and strigolactone content and is required for optimal mycorrhization.