Abstract Multiple myeloma represents a complex hematological malignancy, characterized by its wide array of genetic and clinical events. The introduction of proteasome inhibitors, such as carfilzomib or bortezomib, into the therapeutic landscape has notably enhanced the quality of life and survival rates for patients suffering from this disease. Nonetheless, a significant obstacle in the long-term efficacy of this treatment is the inevitable development of resistance to PIs, posing a substantial challenge in managing the disease effectively. Our study investigates the molecular mechanisms behind carfilzomib resistance by analyzing multi-omics profiles from four multiple myeloma cell lines: AMO-1, KMS-12-PE, RPMI-8226 and OPM-2, together with their carfilzomib-resistant variants. We uncovered a significant downregulation of metabolic pathways linked to strong mitochondrial dysfunction in resistant cells. Further examination of patient samples identified key genes - ABCB1, RICTOR, PACSIN1, KMT2D, WEE1 and GATM - potentially crucial for resistance, guiding us towards promising carfilzomib combination therapies to circumvent resistance mechanisms. The response profiles of tested compounds have led to the identification of a network of gene interactions in resistant cells. We identified two already approved drugs, benidipine and tacrolimus, as potential partners for combination therapy with carfilzomib to counteract resistance. This discovery enhances the clinical significance of our findings.