TN
Taki Nishimura
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,239
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17

Peidu Jiang et al.Feb 20, 2014
Membrane fusion is generally controlled by Rabs, soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), and tethering complexes. Syntaxin 17 (STX17) was recently identified as the autophagosomal SNARE required for autophagosome–lysosome fusion in mammals and Drosophila. In this study, to better understand the mechanism of autophagosome–lysosome fusion, we searched for STX17-interacting proteins. Immunoprecipitation and mass spectrometry analysis identified vacuolar protein sorting 33A (VPS33A) and VPS16, which are components of the homotypic fusion and protein sorting (HOPS)–tethering complex. We further confirmed that all HOPS components were coprecipitated with STX17. Knockdown of VPS33A, VPS16, or VPS39 blocked autophagic flux and caused accumulation of STX17- and microtubule-associated protein light chain (LC3)–positive autophagosomes. The endocytic pathway was also affected by knockdown of VPS33A, as previously reported, but not by knockdown of STX17. By contrast, ultraviolet irradiation resistance–associated gene (UVRAG), a known HOPS-interacting protein, did not interact with the STX17–HOPS complex and may not be directly involved in autophagosome–lysosome fusion. Collectively these results suggest that, in addition to its well-established function in the endocytic pathway, HOPS promotes autophagosome–lysosome fusion through interaction with STX17.
0

Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets

Anoop Velikkakath et al.Jan 5, 2012
Macroautophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by the autophagosome and delivered to the lysosome. Autophagosome formation is considered to take place on the endoplasmic reticulum and involves functions of autophagy-related (Atg) proteins. Here, we report the identification and characterization of mammalian Atg2 homologues Atg2A and Atg2B. Simultaneous silencing of Atg2A and Atg2B causes a block in autophagic flux and accumulation of unclosed autophagic structures containing most Atg proteins. Atg2A localizes on the autophagic membrane, as well as on the surface of lipid droplets. The Atg2A region containing amino acids 1723-1829, which shows relatively high conservation among species, is required for localization to both the autophagic membrane and lipid droplet and is also essential for autophagy. Depletion of both Atg2A and Atg2B causes clustering of enlarged lipid droplets in an autophagy-independent manner. These data suggest that mammalian Atg2 proteins function both in autophagosome formation and regulation of lipid droplet morphology and dispersion.
21

Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of β-propeller associated neurodegeneration

Takahiro Shimizu et al.Mar 9, 2023
Abstract β-propellers that bind polyphosphoinositides (PROPPINs) are an autophagy-related protein family conserved throughout eukaryotes. The PROPPIN family includes Atg18, Atg21, and Hsv2 in yeast and WD-repeat protein interacting with phosphoinositides (WIPI)1–4 in mammals. Mutations in the WIPI genes are associated with human neuronal diseases, including β-propeller associated neurodegeneration (BPAN) caused by mutations in WDR45 (encoding WIPI4). In contrast to yeast PROPPINs, the functions of mammalian WIPI1–WIPI4 have not been systematically investigated. Although the involvement of WIPI2 in autophagy has been clearly shown, the functions of WIPI1, WIPI3, and WIPI4 in autophagy remain poorly understood. In this study, we comprehensively analyzed the roles of WIPI proteins by using WIPI -knockout (single, double, and quadruple knockout) HEK293T cells and recently developed HaloTag-based reporters, which enable us to monitor autophagic flux sensitively and quantitatively. We found that WIPI2 was nearly essential for autophagy and partially redundant with WIPI1. Autophagic flux was unaffected or only slightly reduced by single deletion of WIPI3 (encoded by WDR45B ) or WIPI4 but was profoundly reduced by double deletion of WIPI3 and WIPI4. Furthermore, we revealed variable effects of BPAN-related missense mutations on the autophagic activity of WIPI4. BPAN is characterized by neurodevelopmental and neurodegenerative abnormalities, and we found a possible association between the magnitude of the defect of the autophagic activity of WIPI4 mutants and the severity of neurodevelopmental symptoms. However, some of the BPAN-related missense mutations, which produce neurodegenerative signs, showed almost normal autophagic activity, suggesting that non-autophagic functions of WIPI4 may be related to neurodegeneration in BPAN.
21
Citation1
0
Save
0

WIPI2b recruitment to phagophores and ATG16L1 binding are regulated by ULK1 phosphorylation

Andrea Gubaš et al.Aug 16, 2024
Abstract One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12–ATG5–ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b’s association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b’s association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.
0
Citation1
0
Save
21

Unique Amphipathicα-helix Drives Membrane Insertion and Enzymatic Activity of ATG3

Taki Nishimura et al.Feb 12, 2023
Abstract Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, ATG8/LC3 lipidation, we show how membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α -helices in ATG3 proteins (AH ATG3 ) are found to have low hydrophobicity and to be less bulky. Molecular dynamics simulations reveal that AH ATG3 regulates the dynamics and accessibility of the thioester bond of the ATG3∼LC3 conjugate to lipids, allowing covalent lipidation of LC3. Live cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky- hydrophobic feature of AH ATG3 . Collectively, the unique properties of AH ATG3 facilitate protein- lipid bilayer association leading to the remodeling of the lipid bilayer required for the formation of autophagosomes. Teaser We uncover the unique biophysical property of amphipathic α -helix essential for autophagy