OK
Oleksiy-Zakhar Khoma
Author with expertise in Mechanisms and Management of Neuropathic Pain
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
196
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

MicroCT-based imaging of microvasculature within the bone tissue

David Haberthür et al.Mar 10, 2023
Abstract Angiogenesis is essential for skeletal development, bone healing, and regeneration. Improved non-destructive, three-dimensional (3D) imaging of the vasculature within bone tissue would benefit many research areas, especially implantology and tissue engineering. X-ray microtomography (microCT) is a well-suited non-destructive 3D imaging technique for bone morphology. For microCT-based detection of vessels, it is paramount to use contrast enhancement. Limited differences in radiopacity between perfusion agents and mineralized bone make their distinct segmentation problematic and have been a major drawback of this approach. A decalcification step resolves this issue but inhibits the simultaneous assessment of bone microstructure and vascular morphology. The problem of contrasting becomes further compounded in samples with metal implants. This study describes μAngiofil-enhanced microCT-based visualization of vasculature within bone tissue in small and large animal models, with and without decalcification. We present simultaneous microvascular and bone imaging in murine tibia, a murine bone metastatic model, the pulp chamber, gingiva, and periodontal ligaments. In a large animal model (minipig), we perform visualization and segmentation of different tissue types and vessels in the hemimandible containing metal implants. Moreover, we show the potential of the dual-energy approach in facilitating the distinction between bone tissue and the applied contrast agent. Our manuscript introduces the first non-destructive approach for 3D imaging of the vasculature within soft and hard tissues in the vicinity of metal implants in a large animal model.
4
Paper
Citation1
0
Save
0

An anatomical study of the subarachnoid space surrounding the trigeminal ganglion in horses—in preparation for a controlled glycerol rhizotomy in equids

R. Becker et al.Jul 18, 2024
Introduction Equine trigeminal-mediated headshaking is a painful neuropathic disorder comparable to trigeminal neuralgia in humans. The selective destruction of pain fibers within the trigeminal ganglion, called rhizotomy, is the surgical treatment of choice for idiopathic trigeminal neuralgia refractory to medical treatment in humans. The human trigeminal ganglion is enclosed by a dural recess called the Meckel’s or trigeminal cave, in which the ganglion is surrounded by a cerebrospinal fluid (CSF)-filled subarachnoid space. During glycerol rhizotomy, glycerol is percutaneously injected in this CSF-filled space. Until now, information about the anatomy of the dural recess and the subarachnoid space surrounding the trigeminal ganglion is lacking in horses. The aim of this study was to explore if a CSF-filled subarachnoid space around the trigeminal ganglion exists in horses. Materials and methods Six equine cadaver heads were investigated for CSF accumulation around the ganglion with a 3 Tesla MRI. After anatomical dissection to expose the trigeminal root, a polymer-based radiopaque contrast agent was injected through the porus trigeminus into the subarachnoid space (cisternography). The exact delineation and the volume of the contrast agent accumulation were determined on subsequent micro-computed tomographic scans and segmentation. Finally, the distribution of the contrast agent within the subarachnoid space was examined histologically in three specimens. Results In all 12 specimens included in this study, the trigeminal ganglion was surrounded by a subarachnoid space forming a trigeminal cistern. The mean volume of the trigeminal cave in this study was 0.31 mL (±SD: 0.11 mL). Distribution of the contrast agent along the peripheral nerves (i.e., ophthalmic, maxillary and/or mandibular nerve) was observed in 7 out of 12 specimens. Discussion/conclusion A subarachnoid space surrounding the trigeminal ganglion exists in the horse and could be targeted for glycerol rhizotomy in horses suffering from trigeminal-mediated headshaking. However, the clinical relevance of contrast agent distribution along the peripheral nerves remains to be assessed.
0

Adaptation mechanism of the adult zebrafish respiratory organ to endurance training

Matthias Messerli et al.Aug 22, 2019
In order to study the adaptation scope of the fish respiratory organ and the O2 metabolism due to endurance training, we subjected adult zebrafish ( Danio rerio ) to endurance exercise for 5 weeks. After the training period, the swimmer group showed a significant increase in swimming performance, body weight and length. In scanning electron microscopy of the gills, the average length of centrally located primary filaments appeared significantly longer in the swimmer than in the non-trained control group (+6.1%, 1639 µ m vs. 1545 µ m, p=0.00043) and the average number of secondary filaments increased significantly (+7.7%, 49.27 vs. 45.73, p=9e-09). Micro-computed tomography indicated a significant increase in the gill volume (p=0.048) by 11.8% from 0.490 mm3 to 0.549 mm3. The space-filling complexity dropped significantly (p=0.0088) by 8.2% from 38.8% to 35.9%., i.e. making the gills of the swimmers less compact. Respirometry after 5 weeks showed a significantly higher oxygen consumption (+30.4%, p=0.0081) of trained fish during exercise compared to controls. Scanning electron microscopy revealed different stages of new secondary filament budding, which happened at the tip of the primary lamellae. Using BrdU we could confirm that the growth of the secondary filaments took place mainly in the distal half and the tip and for primary filaments mainly at the tip. We conclude that the zebrafish respiratory organ - unlike the mammalian lung - has a high plasticity, and after endurance training increases its volume and changes its structure in order to facilitate O2 uptake.Author summary Adult zebrafish show an increase of their gill volume after endurance training, likely to adjust for the increased oxygen demand measured with respirometry during swimming.