DF
Desdemona Fricker
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
375
h-index:
21
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Projection-specific integration of convergent thalamic and retrosplenial signals in the presubicular head direction cortex

Louis Richevaux et al.Mar 18, 2023
Summary Head-direction (HD) signals function as the brain’s internal compass. They are organized as an attractor, and anchor to the environment via visual landmarks. Here we examine how thalamic HD signals and visual landmark information from the retrosplenial cortex combine in the presubiculum. We find that monosynaptic excitatory connections from anterior thalamic nucleus and from retrosplenial cortex converge on single layer 3 pyramidal neurons in the dorsal portion of mouse presubiculum. Independent dual wavelength photostimulation of these inputs in slices leads to action potential generation preferentially for near-coincident inputs, indicating that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex. Layer 4 neurons, which innervate the lateral mammillary nucleus, form a second step in the association of HD and landmark signals. They receive little direct input from thalamic and retrosplenial axons. We show that layer 4 cells are excited di-synaptically, transforming regular spiking activity into bursts of action potentials, and that their firing is enhanced by cholinergic agonists. Thus, a coherent sense of orientation involves projection specific translaminar processing in the presubiculum, where neuromodulation facilitates landmark updating of HD signals in the lateral mammillary nucleus.
0

Optogenetic stimulation of long-range inputs and functional characterization of connectivity in patch-clamp recordings in mouse brain slices

Louis Richevaux et al.Dec 14, 2018
Knowledge of cell type specific synaptic connectivity is a crucial prerequisite for understanding brain wide neuronal circuits. The functional investigation of long-range connections requires targeted recordings of single neurons combined with the specific stimulation of identified distant inputs. This is often difficult to achieve with conventional, electrical stimulation techniques, because axons from converging upstream brain areas may intermingle in the target region. The stereotaxic targeting of a specific brain region for virus-mediated expression of light sensitive ion channels allows to selectively stimulate axons coming from that region with light. Intracerebral stereotaxic injections can be used in well-delimited structures, such as the anterodorsal thalamic nuclei, and also in other subcortical or cortical areas throughout the brain. Here we describe a set of techniques for precise stereotaxic injection of viral vectors expressing channelrhodopsin in the anterodorsal thalamus, followed by photostimulation of their axon terminals in hippocampal slices. In combination with whole-cell patch clamp recording from a postsynaptically connected presubicular neuron, photostimulation of thalamic axons allows the detection of functional synaptic connections, their pharmacological characterization, and the evaluation of their strength in the brain slice preparation. We demonstrate that axons originating in the anterodorsal thalamus ramify densely in presubicular layers 1 and 3. The photostimulation of Chronos expressing thalamic axon terminals in presubiculum initiates short latency postsynaptic responses in a presubicular layer3 neuron, indicating a monosynaptic connection. In addition, biocytin filling of the recorded neuron and posthoc revelation confirms the layer localization and pyramidal morphology of the postsynaptic neuron. Taken together, the optogenetic stimulation of long-range inputs in ex vivo brain slices is a useful method to determine the cell-type specific functional connectivity from distant brain regions.
0

Anterior thalamic excitation and feed-forward inhibition of presubicular neurons projecting to medial entorhinal cortex

Mérie Nassar et al.Jan 4, 2018
The presubiculum contains head direction cells that are crucial for spatial navigation. Here, we examined the connectivity and strengths of thalamic inputs to presubicular layer 3 neurons projecting to the medial entorhinal cortex in the mouse. We recorded pairs of projection neurons and interneurons while optogenetically stimulating afferent fibers from the anterior thalamic nuclei (ATN). Thalamic input differentially affects presubicular neurons: layer 3 pyramidal neurons and fast-spiking parvalbumin expressing (PV) interneurons are directly and monosynaptically activated, with depressing dynamics, while somatostatin (SST) expressing interneurons are indirectly excited, during repetitive ATN activity. This arrangement ensures that the thalamic excitation of layer 3 cells is often followed by disynaptic inhibition. Feed-forward inhibition is largely mediated by PV interneurons which have a high probability of connection to presubicular pyramidal cells. Our data point to a specific role of presubicular microcircuits in shaping thalamic head-direction signals transmitted to medial entorhinal cortex: Short-latency PV cell activation may enforce temporally precise head direction tuning during fast turns. However, depression at ATN-PV synapses during repeated activation tends to facilitate pyramidal cell firing when head direction is maintained. Operations performed in presubicular layer 3 circuits seem well-adapted for spatial fine-tuning of head direction signals sent to the medial entorhinal cortex.
1

Subchronic alteration of vestibular hair cells in mice: implications for multisensory gaze stabilization

Louise Schenberg et al.Apr 19, 2023
Abstract The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.
12

Oligodendrocyte secreted factors shape hippocampal GABAergic neuron transcriptome and physiology

Elisa Mazuir et al.Nov 9, 2020
ABSTRACT Oligodendrocytes form myelin for central nervous system axons and release factors which signal to neurons during myelination. Here, we ask how oligodendroglial factors influence hippocampal GABAergic neuron physiology. In mixed hippocampal cultures GABAergic neurons fired action potentials of short duration and received high frequencies of excitatory synaptic events. In purified neuronal cultures without glial cells, GABAergic neuron excitability increased and the frequency of synaptic events decreased. These effects were largely reversed by adding oligodendrocyte conditioned medium. We compared the transcriptomic signature with the electrophysiological phenotype of single neurons in these three culture conditions. Genes expressed by single pyramidal or GABAergic neurons largely conformed to expected cell-type specific patterns. Multiple genes of GABAergic neurons were significantly downregulated by the transition from mixed cultures containing glial cells to purified neuronal cultures. Levels of these genes were restored by the addition of oligodendrocyte conditioned medium to purified cultures. Clustering genes with similar changes in expression between different culture conditions revealed processes affected by oligodendroglial factors. Enriched genes are linked to roles in synapse assembly, action potential generation and transmembrane ion transport, including of zinc. These results provide new insight into the molecular targets by which oligodendrocytes influence neuron excitability and synaptic function.