EL
Elisabeth Leehr
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
51
h-index:
26
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sleep duration is associated with white matter microstructure and cognitive performance in healthy adults

Pascal Grumbach et al.Jul 10, 2020
Reduced sleep duration and sleep deprivation have been associated with cognitive impairment as well as decreased white matter integrity as reported by experimental studies. However, it is largely unknown whether differences in sleep duration and sleep quality might affect microstructural white matter and cognition. Therefore, the present study aims to examine the cross-sectional relationship between sleep duration, sleep quality, and cognitive performance in a naturalistic study design, by focusing on the association with white matter integrity in a large sample of healthy, young adults. To address this, 1,065 participants, taken from the publicly available sample of the Human Connectome Project, underwent diffusion tensor imaging. Moreover, broad cognitive performance measures (NIH Cognition Toolbox) and sleep duration and quality (Pittsburgh Sleep Quality Index) were assessed. The results revealed a significant positive association between sleep duration and overall cognitive performance. Shorter sleep duration significantly correlated with fractional anisotropy (FA) reductions in the left superior longitudinal fasciculus (SLF). In turn, FA in this tract was related to measures of cognitive performance and was shown to significantly mediate the association of sleep duration and cognition. For cognition only, associations shift to a negative association of sleep duration and cognition for participants sleeping more than 8 hr a day. Investigations into subjective sleep quality showed no such associations. The present study showed that real-world differences in sleep duration, but not subjective sleep quality are related to cognitive performance measures and white matter integrity in the SLF in healthy, young adults.
4

Interrelated effects of age and parenthood on whole-brain controllability: protective effects of parenthood in mothers

Hamidreza Jamalabadi et al.Jul 14, 2022
Abstract Background Controllability is a measure of the brain’s ability to orchestrate neural activity which can be quantified in terms of properties of the brain’s network connectivity. Evidence from the literature suggests that aging can exert a general effect on whole-brain controllability. Mounting evidence, on the other hand, suggests that parenthood and motherhood in particular lead to long-lasting changes in brain architecture that effectively slow down brain aging. We hypothesize that parenthood might preserve brain controllability properties from aging. Methods In a sample of 814 healthy individuals (aged 33.9±12.7 years, 522 females), we estimate whole-brain controllability and compare the aging effects in subjects with vs. those without children. We use diffusion tensor imaging (DTI) to estimate the brain structural connectome. The level of brain control is then calculated from the connectomic properties of the brain structure. Specifically, we measure the network control over many low-energy state transitions (average controllability) and the network control over difficult-to-reach states (modal controllability). Results and conclusion In nulliparous females, whole-brain average controllability increases, and modal controllability decreases with age, a trend that we do not observe in parous females. Statistical comparison of the controllability metrics shows that modal controllability is higher and average controllability is lower in parous females compared to nulliparous females. In men, we observed the same trend, but the difference between nulliparous and parous males do not reach statistical significance. Our results provide strong evidence that parenthood contradicts aging effects on brain controllability and the effect is stronger in mothers.
0

ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain

Yann Quidé et al.Jul 26, 2024
Chronic pain has a profound societal burden, affecting 20% to 30% of the world population,10,13,14,47 and is associated with high rates of comorbid mental health conditions, especially depression and anxiety.15 Women and people of increasing age are disproportionately affected by chronic pain,14,32 and while there are pharmacological and nonpharmacological treatments available, many individuals still do not benefit from these treatments.11,16,19,31,35,45 One significant challenge in providing effective pain-relieving treatments arises from our incomplete understanding of the mechanisms underlying the development and maintenance of chronic pain. Some of these mechanisms include changes in brain morphology and function.2,8,12,18,25,28,37 One approach to better understand these mechanisms is to combine neuroimaging studies of diverse populations with the purpose of identifying common phenotypes and neuroimaging correlates. Phenotyping to explore both similarities and heterogeneity across pain conditions is necessary to inform disease prognosis and elucidate common treatment targets. To this endeavor, the Enhancing Neuroimaging and Genetics through Meta-Analysis (ENIGMA)-Chronic Pain working group was formed in November 2022. ENIGMA-Chronic Pain has since welcomed over 70 pain investigators from all over the world, to pool and integrate existing neuroimaging and clinical data from approximately 2000 chronic pain and 4000 pain-free healthy individuals, from over 30 international and independently collected datasets. 1. What is ENIGMA? What are the aims of the ENIGMA-Chronic Pain Working Group? Founded in 2009, the aim of the ENIGMA Consortium is to address the growing replication problems in neuroimaging research. ENIGMA is a global collaboration of more than 2000 scientists from over 45 countries studying the human brain, in health and over 30 neurological, mental, and neurogenetic diseases.42 ENIGMA coordinates large-scale neuroimaging analyses, pooling existing datasets from around the world,6,34,39 actively coordinating the reuse of data, while accommodating data privacy safeguards, bringing rich resources and expertise to answer fundamental questions related to major brain disorders. By integrating available existing datasets and building on the growing infrastructure of the ENIGMA consortium, ENIGMA-Chronic Pain provides a platform and a resource to the chronic pain community allowing for data findability, accessibility, interoperability, and44 reusability—all vital aspects of reproducible research. Using a cost-effective and innovative global approach by merging the resources and data of leading chronic pain neuroimaging centers, ENIGMA-Chronic Pain offers a unique opportunity to obtain detailed, reproducible, and reliable data on brain mechanisms associated with chronic pain. ENIGMA-Chronic Pain integrates single studies of specific chronic pain conditions, including precursor data repositories (eg, OpenPain), and larger population-based biobanks with recorded indices of chronic pain (eg, UK Biobank).8 Recent advances in machine learning and artificial intelligence technologies also offer new and powerful ways to analyze these existing neuroimaging data. Through a worldwide collaboration of pain researchers and clinicians, ENIGMA-Chronic Pain will aim to (1) determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging (relative to pain-free healthy controls); (2) examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function; and (3) identify the roles of key sociodemographic factors and medication on brain morphology and function. 2. Determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging ENIGMA-Chronic Pain combines smaller datasets from heterogeneous chronic pain conditions. This approach maximizes the power of planned analyses and is necessary to identify brain correlates shared across chronic pain conditions. Through planned follow-up analyses on pooled datasets of similar pain types, pain locations across the body, or specific diagnoses, ENIGMA-Chronic Pain will identify correlates specific to the studied conditions at a larger scale than has previously been possible. ENIGMA-Chronic Pain will begin with examining brain topography of chronic pain by using common processing pipelines and software such as FreeSurfer for T1-weighted structural magnetic resonance imaging scans (sMRI)17,20,21 or Functional MRI of the Brain Software Library (FSL) for diffusion MRI (dMRI).23,38 Further to brain-wide region-of-interest analyses, investigation of multimodal correlates and brain networks of chronic pain will be conducted using whole-brain analyses, including standardized indices of functional connectivity from resting-state functional MRI (rs-fMRI) processed with ENIGMA's HALFpipe,43 voxel-based morphometry, and machine learning approaches to fuse multimodal features from sMRI, dMRI, and rs-fMRI to make diagnostic classification or prediction of a future clinical state. 3. Examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function Chronic pain is often accompanied by comorbid mental health conditions that can prevent treatment success.46 For example, 5% to 85% of individuals with chronic pain (depending on the study populations and settings) experience depression.1,9 The ENIGMA Consortium has extensively investigated the detailed brain and genetic markers of most common mental health conditions and reported alterations in brain regions similar to those commonly reported in smaller chronic pain studies.4,36 Evidence for shared or specific brain mechanisms between chronic pain and depression and anxiety is now growing,33,40,49,50 but no definite conclusion can be drawn from these smaller studies. Using advanced statistical models, our unique sample size, and availability of indices of comorbid mental health conditions, the pooled dataset from ENIGMA-Chronic Pain will aim to disentangle the fine morphological and functional brain alterations across all pain conditions, but also within specific pain types. This approach will contribute to identify plausible targets for more effective treatments for people living with both chronic pain and these comorbid conditions. 4. Examine the roles of key sociodemographic factors and medication on brain morphology and function Sex and age are key factors that can influence the transition to chronic pain.48 Women have greater prevalence rates for chronic pain conditions compared with men and experience more frequent, intense, and longer-lasting pain across the lifespan.14,24,30 These sex-specific differences can affect treatment choice, side effect profiles, and therapeutic responses.3 Although incompletely understood, many processes including genetic,29 neuroendocrine/neuroimmune,26 or brain-based differences,22 contribute to sex differences observed in chronic pain. Chronic pain is also highly prevalent in people of increasing age,14 along with other age-related pathologies, but the relationship between increasing age and chronic pain on brain morphology and function is still to be clearly determined. The inclusion of studies with comorbidity information that may inform causal modeling (eg, traumatic injuries, repetitive stress injuries, osteoporosis, metabolic disorders like diabetes, etc.) will clarify some of the brain–body connections at play. Existing preliminary evidence for the influence of these key sociodemographic factors needs further replication and refinement using large datasets. Another critical factor impacting brain morphology and function in chronic pain is the use of various types of pharmacological treatments,27 including tricyclic antidepressants, serotonin–norepinephrine reuptake inhibitors, antiepileptics, nonsteroidal anti-inflammatory drugs, and benzodiazepines.11,35 Using the available and detailed medication information recorded within ENIGMA-Chronic Pain, the aim of this study is to determine the variations in brain morphology and function associated with specific pharmacological treatment categories or combinations of thereof. 5. ENIGMA-Chronic Pain: expanding to other imaging modalities ENIGMA-Chronic Pain builds on the experience of the Consortium to host the largest and most comprehensive dataset for neuroimaging studies of chronic pain. In addition to sMRI, dMRI, and rs-fMRI data, ENIGMA-Chronic Pain will leverage the contribution of chronic pain researchers and clinicians with data and expertise in other neuroimaging modalities, including resting-state electroencephalography (EEG), task-based fMRI and EEG, event-related potentials, magnetoencephalography, functional near-infrared spectroscopy, and magnetic resonance spectroscopy. In addition, the aim of ENIGMA-Chronic Pain is to include neuromodulation studies, such as repetitive transcranial magnetic resonance stimulation, TMS-EEG, transcranial direct current stimulation, or transcranial alternating current stimulation studies, to examine potential causal associations.7 Finally, following work from the ENIGMA-Clinical Endpoint working group,41 a long-term goal includes building a framework of standardized questionnaires and tools for future research, to be applied to most, if not all, chronic pain conditions and to integrate genetics data to better understand the relationship between genetic and environmental risks on brain phenotypes of chronic pain overall and for available subtypes. 6. Conclusions ENIGMA-Chronic Pain will establish the largest worldwide platform for neuroimaging data dedicated to chronic pain research. This approach enables large-scale collaborative opportunities to identify the common and specific brain correlates of chronic pain conditions, as well as the role of mental health comorbidities, key sociodemographic factors, and pharmacological treatment on these alterations. This initiative will provide invaluable new knowledge based on adequately powered neuroimaging datasets. Future aims of the working group could include extending the scope to the earliest periods of the human lifespan, leveraging neonatal MRI and EEG datasets with pain-relevant paradigms,5 to investigate the potential developmental origins of chronic pain susceptibility in later years. Last, we extend the call to additional groups to join, contribute their expertise, and share their neuroimaging, genetic, psychological, and clinical data from healthy controls and individuals with chronic pain (see information and contact details on https://enigma.ini.usc.edu/ongoing/enigma-chronic-pain/). Through the inclusion of most, if not all, chronic pain neuroimaging research groups, we hope to grow the working group and thereby fulfill its goals. Conflict of interest statement None of the authors declare any conflicts of interest. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government, or those of the NHS, the NIHR, or the Department of Health from the United Kingdom.
0
Citation2
0
Save
0

Altered cortical synaptic lipid signaling leads to intermediate phenotypes of mental disorders

Oliver Tüscher et al.May 28, 2024
Abstract Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 ( PRG-1 R345T/WT ) . Prg-1 R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.
0
Citation2
0
Save
0

Lack of evidence for predictive utility from resting state fMRI data for individual exposure-based cognitive behavioral therapy outcomes: A machine learning study in two large multi-site samples in anxiety disorders

Kevin Hilbert et al.May 25, 2024
Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.
0

Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders—ENIGMA study in people with bipolar disorders and obesity

Sean McWhinney et al.Jun 1, 2024
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
0

How movies move us – movie preferences are linked to differences in neuronal emotion processing of fear and anger: an fMRI study

Esther Zwiky et al.Jun 4, 2024
Introduction As a source of audio-visual stimulation, movies expose people to various emotions. Interestingly, several genres are characterized by negative emotional content. Albeit theoretical approaches exist, little is known about preferences for specific movie genres and the neuronal processing of negative emotions. Methods We investigated associations between movie genre preference and limbic and reward-related brain reactivity to close this gap by employing an fMRI paradigm with negative emotional faces in 257 healthy participants. We compared the functional activity of the amygdala and the nucleus accumbens (NAcc) between individuals with a preference for a particular movie genre and those without such preference. Results and discussion Amygdala activation was relatively higher in individuals with action movie preference ( p TFCE-FWE = 0.013). Comedy genre preference was associated with increased amygdala ( p TFCE-FWE = 0.038) and NAcc activity ( p TFCE-FWE = 0.011). In contrast, crime/thriller preference (amygdala: p TFCE-FWE ≤ 0.010, NAcc: p TFCE-FWE = 0.036), as well as documentary preference, was linked to the decreased amygdala ( p TFCE-FWE = 0.012) and NAcc activity ( p TFCE-FWE = 0.015). The study revealed associations between participants’ genre preferences and brain reactivity to negative affective stimuli. Interestingly, preferences for genres with similar emotion profiles (action, crime/thriller) were associated with oppositely directed neural activity. Potential links between brain reactivity and susceptibility to different movie-related gratifications are discussed.
0

Impact of NPSR1 gene variation on the neural correlates of phasic and sustained fear in spider phobia – an imaging genetics and independent replication approach

Elisabeth Leehr et al.Aug 21, 2024
Abstract The functional neuropeptide S receptor 1 (NPSR1) gene A/T variant (rs324981) is associated with fear processing. We investigated the impact of NPSR1 genotype on fear processing and on symptom reduction following treatment in individuals with spider phobia. A replication approach was applied (discovery sample: Münster (MS) nMS=104; replication sample Würzburg (WZ) nWZ=81). Participants were genotyped for NPSR1 rs324981 (T-allele carriers [risk] versus AA homozygotes [no-risk]). A sustained and phasic fear paradigm was applied during functional magnetic resonance imaging. A one-session virtual reality exposure treatment (VRET) was conducted. Change of symptom severity from pre to post treatment and within session fear reduction were assessed. T-allele carriers in the discovery sample displayed lower anterior cingulate cortex (ACC) activation compared to AA homozygotes independent of condition. For sustained fear, this effect was replicated within a small cluster and medium effect size. No association with symptom reduction was found. Within-session fear reduction was negatively associated with ACC activation in T-allele carriers in the discovery sample. NPSR1 rs324981 genotype might be associated with fear processing in the ACC in spider phobia. Interpretation as potential risk-increasing function of the NPSR1 rs324981 T-allele via impaired top-down control of limbic structures remains speculative. Potential association with symptom reduction warrants further research.
1

Cross-validation for the estimation of effect size generalizability in mass-univariate brain-wide association studies

Janik Goltermann et al.Mar 30, 2023
Abstract Introduction Statistical effect sizes are systematically overestimated in small samples, leading to poor generalizability and replicability of findings in all areas of research. Due to the large number of variables, this is particularly problematic in neuroimaging research. While cross-validation is frequently used in multivariate machine learning approaches to assess model generalizability and replicability, the benefits for mass-univariate brain analysis are yet unclear. We investigated the impact of cross-validation on effect size estimation in univariate voxel-based brain-wide associations, using body mass index (BMI) as an exemplary predictor. Methods A total of n=3401 adults were pooled from three independent cohorts. Brain-wide associations between BMI and gray matter structure were tested using a standard linear mass-univariate voxel-based approach. First, a traditional non-cross-validated analysis was conducted to identify brain-wide effect sizes in the total sample (as an estimate of a realistic reference effect size). The impact of sample size (bootstrapped samples ranging from n=25 to n=3401) and cross-validation on effect size estimates was investigated across selected voxels with differing underlying effect sizes (including the brain-wide lowest effect size). Linear effects were estimated within training sets and then applied to unseen test set data, using 5-fold cross-validation. Resulting effect sizes (explained variance) were investigated. Results Analysis in the total sample (n=3401) without cross-validation yielded mainly negative correlations between BMI and gray matter density with a maximum effect size of R 2 p =.036 (peak voxel in the cerebellum). Effects were overestimated exponentially with decreasing sample size, with effect sizes up to R 2 p =.535 in samples of n=25 for the voxel with the brain-wide largest effect and up to R 2 p =.429 for the voxel with the brain-wide smallest effect. When applying cross-validation, linear effects estimated in small samples did not generalize to an independent test set. For the largest brain-wide effect a minimum sample size of n=100 was required to start generalizing (explained variance >0 in unseen data), while n=400 were needed for smaller effects of R 2 p =.005 to generalize. For a voxel with an underlying null effect, linear effects found in non-cross-validated samples did not generalize to test sets even with the maximum sample size of n=3401. Effect size estimates obtained with and without cross-validation approached convergence in large samples. Discussion Cross-validation is a useful method to counteract the overestimation of effect size particularly in small samples and to assess the generalizability of effects. Train and test set effect sizes converge in large samples which likely reflects a good generalizability for models in such samples. While linear effects start generalizing to unseen data in samples of n>100 for large effect sizes, the generalization of smaller effects requires larger samples (n>400). Cross-validation should be applied in voxel-based mass-univariate analysis to foster accurate effect size estimation and improve replicability of neuroimaging findings. We provide open-source python code for this purpose ( https://osf.io/cy7fp/?view_only=a10fd0ee7b914f50820b5265f65f0cdb ).
0

Gray matter correlates of childhood maltreatment in the context of major depression: searching for replicability in a multi-cohort brain-wide association study of 3225 adults

Janik Goltermann et al.Aug 16, 2024
Abstract Background Childhood maltreatment has been associated with gray matter alterations, particularly within limbic and prefrontal regions. However, findings are heterogeneous, potentially due to differing methodologies and sample characteristics. Here, we investigate the cross-cohort replicability of gray matter correlates of childhood maltreatment across large clinical and non-clinical adult samples using harmonized assessment, preprocessing and analysis pipelines. Methods Three independent adult cohorts comprising a total of N=3225 individuals (healthy control [HC]: n=1898 and participants with major depressive disorder [MDD]: n=1327) underwent structural MRI and maltreatment assessment via the Childhood Trauma Questionnaire (CTQ). Associations between childhood maltreatment and voxel-based gray matter volume (GMV) were tested on a wholebrain level in two steps: 1) pooling all three cohorts together to harvest maximum statistical power (applying a voxel-wise FWE-corrected threshold of p FWE <.05) and 2) investigating the replicability of effects by assessing cross-cohort spatial overlap of significant voxels at two liberal uncorrected thresholds (p unc <.001 and p unc <.01). Twelve statistical models were tested, that varied in maltreatment operationalizations, subsamples and covariates. Results Pooling cohorts yielded no significant maltreatment-GMV associations when controlling for lifetime MDD diagnosis. Dropping MDD diagnosis as a covariate yielded significant negative effects of maltreatment within widespread clusters across temporal regions, a fusiform-lingual-parahippocampal complex, the thalamus and the orbitofrontal cortex (k=4970, p FWE <.05). Including only HC subsamples, small clusters emerged either when using the CTQ sum score (k=99, p FWE <.05, orbitofrontal) or when investigating severe forms of maltreatment in HCs (k=132, p FWE <.05, cerebellum). The largest effect size when pooling all three cohorts was partial R 2 =.022. Replicability analyses using a liberal uncorrected thresholding at p unc <.001 yielded maltreatment-GMV associations within all single cohorts and across all statistical models. However, these associations were effectively non-replicable across cohorts, which was largely consistent across statistical models. Even extending the significance threshold to a liberal threshold of p unc <.01 yielded only marginal replicability across cohorts. Conclusions Gray matter correlates of childhood maltreatment, measured with the CTQ, are non-replicable across large cohorts when adequately controlling for depression diagnosis, even when employing harmonized study protocols, lenient statistical thresholds and exploring various maltreatment operationalizations and subgroups. Previous findings may have been inflated by inadequate control for confounding diagnosis effects or due to publication bias. Our findings underscore the importance of a paradigm shift towards investigating the replicability of neuroimaging findings.
Load More