Abstract Tumor-initiating cells with reprogramming plasticity are thought to be essential for cancer development and metastatic regeneration in many cancers; however, the molecular mechanisms are not fully understood. This study reports that CD81, a tetraspanin protein marker of small extracellular vesicles (exosomes), functions as a binding partner of CD44 and facilitates self-renewal of tumor initiating cells. Using machine learning-assisted protein structure modeling, co-immunoprecipitation, and mutagenesis approaches, we further demonstrate that CD81 interacts with CD44 on the cellular membrane through their extracellular regions. In-depth global and phosphoproteomic analyses of clustering tumor cells unveils endocytosis-related signature pathways of proteins and phosphorylation patterns regulated by CD81 and CD44 specifically or shared between two. Notably, CRISPR Cas9-mediated depletion of either CD44 or CD81 results in loss of both proteins in cancer cell-secreted exosomes, a state which abolishes exosome-induced self-renewal of recipient cells for mammosphere formation. CD81 is expressed in >80% of human circulating tumor cells (CTCs) and specifically enriched in clustered CTCs along with CD44 isolated from breast cancer patients. Mimicking the phenotypes of CD44 deficiency, loss of CD81 also inhibits tumor cluster aggregation, tumorigenesis, and lung metastasis of triple negative breast cancer (TNBC), supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights the novel role of CD81 and its partnership with CD44 in cancer exosomes, self-renewal, CTC clustering, and metastasis initiation of TNBC.