SB
Sarah Barrass
Author with expertise in Viral RNA Silencing and Plant Immunity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
4
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Proteome-wide cross-linking mass spectrometry to identify specific virus capsid-host interactions between tick-borne encephalitis virus and neuroblastoma cells

Sarah Barrass et al.Oct 30, 2021
+5
O
L
S
Abstract Virus-host protein-protein interactions are central to viral infection, but are challenging to identify and characterise, especially in complex systems involving intact viruses and cells. In this work, we demonstrate a proteome-wide approach to identify virus-host interactions using chemical cross-linking coupled with mass spectrometry. We adsorbed tick-borne encephalitis virus onto metabolically-stalled neuroblastoma cells, covalently cross-linked interacting virus-host proteins, and performed limited proteolysis to release primarily the surface-exposed proteins for identification by mass spectrometry. Using the intraviral protein cross-links as an internal control to assess cross-link confidence levels, we identified 22 high confidence unique intraviral cross-links and 59 high confidence unique virus-host protein-protein interactions. The identified host proteins were shown to interact with eight distinct sites on the outer surface of the virus. Notably, we identified an interaction between the substrate-binding domain of heat shock protein family A member 5, an entry receptor for four related flaviviruses, and the hinge region of the viral envelope protein. We also identified host proteins involved in endocytosis, cytoskeletal rearrangement, or located in the cytoskeleton, suggesting that entry mechanisms for tick-borne encephalitis virus could include both clathrin-mediated endocytosis and macropinocytosis. Additionally, cross-linking of the viral proteins showed that the capsid protein forms dimers within tick-borne encephalitis virus, as previously observed with purified C proteins for other flaviviruses. This method enables the identification and mapping of transient virus-host interactions, under near-physiological conditions, without the need for genetic manipulation. Author summary Tick-borne encephalitis virus is an important human pathogen that can cause severe infection often resulting in life-long neurological complications or even death. As with other viruses, it fully relies on the host cells, and any successful infection starts with interactions between the viral structural proteins and cellular surface proteins. Mapping these interactions is essential both for the fundamental understanding of viral entry mechanisms, and for guiding the design of new antiviral drugs and vaccines. Here, we stabilise the interactions between tick-borne encephalitis virus and human proteins by chemical cross-linking. We then detect the interactions using mass spectrometry and analyse the data to identify protein-protein complexes. We demonstrate that we can visualise the protein interaction interfaces by mapping the cross-linked sites onto the host and viral protein structures. We reveal that there are eight distinct sites on the outer surface of the viral envelope protein that interact with host. Using this approach, we mapped interactions between the tick-borne encephalitis virus envelope protein, and 59 host proteins, identifying a possible new virus receptor. These results highlight the potential of chemical cross-linking coupled with mass spectrometry to identify and map interactions between viral and host proteins.
7
Citation4
0
Save
13

Fast Viral Dynamics Revealed by Microsecond Time-Resolved Cryo-EM

Oliver Harder et al.Apr 19, 2023
U
M
S
O
Abstract Observing proteins as they perform their tasks has largely remained elusive, which has left our understanding of protein function fundamentally incomplete. To enable such observations, we have recently proposed a novel technique that improves the time resolution of cryo-electron microscopy (cryo EM) to microseconds. Here, we demonstrate that microsecond time-resolved cryo-EM enables observations of fast protein dynamics. We use our approach to elucidate the mechanics of the capsid of cowpea chlorotic mottle virus (CCMV), whose large-amplitude motions play a crucial role in the viral life cycle. We observe that a pH jump causes the extended configuration of the capsid to contract on the microsecond timescale. While this is a concerted process, the motions of the capsid proteins involve different timescales, leading to a curved reaction path.
1

Simultaneous Membrane and RNA Binding by Tick-Borne Encephalitis Virus Capsid Protein

Lauri Pulkkinen et al.Oct 6, 2022
+6
M
S
L
Abstract Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae , genus Flavivirus . Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate nucleocapsid assembly by characterizing the interactions of the wild-type and truncated capsid proteins with membranes by using biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.