AM
Arne Meyer
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1
h-index:
8
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Nonlinear sensitivity to acoustic context is a stable feature of neuronal responses to complex sounds in auditory cortex of awake mice

Marios Akritas et al.Apr 24, 2023
+3
J
A
M
Abstract The perceptual salience of a sound depends on the acoustic context in which it appears, and can vary on a timescale of milliseconds. At the level of single neurons in the auditory cortex, spectrotemporal tuning for particular sounds is shaped by a similarly fast and systematic nonlinear sensitivity to acoustic context. Does this neuronal context sensitivity “drift” over time in awake animals, or is it a stable feature of sound representation in the auditory cortex? We used chronically implanted tetrode arrays in awake mice to measure the electrophysiological responses of auditory cortical neurons to spectrotemporally complex, rapidly varying sounds across many days. For each neuron in each recording session, we applied the nonlinear-linear “context model” to estimate both a principal (spectrotemporal) receptive field and a “contextual gain field” describing the neuron’s nonlinear sensitivity to acoustic context. We then quantified the stability of these fields within and across days, using spike waveforms to match neurons recorded in multiple sessions. Contextual gain fields of auditory cortical neurons in awake mice were remarkably stable across many days of recording, and comparable in stability to principal receptive fields. Interestingly, there were small but significant effects of changes in locomotion or pupil size on the ability of the context model to fit temporal fluctuations in the neuronal response. We conclude that both spectrotemporal tuning and nonlinear sensitivity to acoustic context are stable features of neuronal sound representation in the awake auditory cortex, which can be modulated by behavioral state.
8
Citation1
0
Save
0

Two distinct types of eye-head coupling in freely moving mice

Arne Meyer et al.Feb 20, 2020
J
J
A
Animals actively interact with their environment to gather sensory information. There is conflicting evidence about how mice use vision to sample their environment. During head restraint, mice make rapid eye movements strongly coupled between the eyes, similar to conjugate saccadic eye movements in humans. However, when mice are free to move their heads, eye movement patterns are more complex and often non-conjugate, with the eyes moving in opposite directions. Here, we combined eye tracking with head motion measurements in freely moving mice and found that both observations can be explained by the existence of two distinct types of coupling between eye and head movements. The first type comprised non-conjugate eye movements which systematically compensated for changes in head tilt to maintain approximately the same visual field relative to the horizontal ground plane. The second type of eye movements were conjugate and coupled to head yaw rotation to produce a "saccade and fixate" gaze pattern. During head initiated saccades, the eyes moved together in the same direction as the head, but during subsequent fixation moved in the opposite direction to the head to compensate for head rotation. This "saccade and fixate" pattern is similar to that seen in humans who use eye movements (with or without head movement) to rapidly shift gaze but in mice relies on combined eye and head movements. Indeed, the two types of eye movements very rarely occurred in the absence of head movements. Even in head-restrained mice, eye movements were invariably associated with attempted head motion. Both types of eye-head coupling were seen in freely moving mice during social interactions and a visually-guided object tracking task. Our results reveal that mice use a combination of head and eye movements to sample their environment and highlight the similarities and differences between eye movements in mice and humans.
0

Hearing loss promotes schizophrenia-relevant brain and behavioral abnormalities in a mouse model of human 22q11.2 Deletion Syndrome

Fhatarah Zinnamon et al.Feb 3, 2019
+4
S
F
F
Hearing loss has been implicated as a risk factor for schizophrenia, but it is not known whether this association arises from common etiology, top-down influences (e.g., social isolation), bottom-up neurobiological mechanisms, or combinations of these factors. Patients with 22q11.2 Deletion Syndrome (22q11.2DS) have a 25-30% risk of developing schizophrenia, and also suffer frequent hearing loss. Here, we used the Df1/+ mouse model of 22q11.2DS to investigate the relationship between hearing loss and susceptibility to schizophrenia-relevant brain and behavioral abnormalities. Df1/+ mice have a multi-gene deletion analogous to the chromosomal microdeletion that causes human 22q11.2DS, and like human 22q11.2DS patients exhibit high rates of hearing loss arising primarily from susceptibility to middle ear inflammation. We found that hearing loss in Df1/+ mice affected schizophrenia-relevant endophenotypes, including electrophysiological measures of central auditory gain and behavioral measures of auditory sensorimotor gating. Moreover, PV+ inhibitory interneurons, another marker for schizophrenia pathology, were significantly reduced in density in auditory cortex but not secondary motor cortex of Df1/+ mice with hearing loss. These results reveal bottom-up neurobiological mechanisms through which peripheral hearing loss arising from the 22q11.2 deletion may promote the emergence of schizophrenia-relevant auditory brain and behavioral abnormalities, and also suggest a link between conductive hearing loss and reduced PV+ interneuron density in the auditory cortex.
0

An ultralight head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice

Arne Meyer et al.Apr 3, 2018
+2
J
J
A
Breakthroughs in understanding the neural basis of natural behavior require neural recording and intervention to be paired with high-fidelity multimodal behavioral monitoring. An extensive genetic toolkit for neural circuit dissection, and well-developed neural recording technology, make the mouse a powerful model organism for systems neuroscience. However, methods for high-bandwidth acquisition of behavioral signals in mice remain limited to fixed-position cameras and other off-animal devices, complicating the monitoring of animals freely engaged in natural behaviors. Here, we report the development of an ultralight head-mounted camera system combined with head-movement sensors to simultaneously monitor eye position, pupil dilation, whisking, and pinna movements along with head motion in unrestrained, freely behaving mice. The power of the combined technology is demonstrated by observations linking eye position to head orientation; whisking to non-tactile stimulation; and, in electrophysiological experiments, visual cortical activity to volitional head movements.
1

The Hybrid Drive: a chronic implant device combining tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology in freely moving mice

Matteo Guardamagna et al.Aug 20, 2021
+3
R
R
M
Summary Understanding the function of brain cortices requires simultaneous investigation at multiple spatial and temporal scales and to link neural activity to an animal’s behavior. A major challenge is to measure within- and across-layer information in actively behaving animals, in particular in mice that have become a major species in neuroscience due to an extensive genetic toolkit. Here we describe the Hybrid Drive, a new chronic implant for mice that combines tetrode arrays to record within-layer information with silicon probes to simultaneously measure across-layer information. The design of our device combines up to 14 tetrodes and 2 silicon probes, that can be arranged in custom arrays to generate unique areas-specific (and multi-area) layouts. We show that large numbers of neurons and layer-resolved local field potentials can be recorded from the same brain region across weeks without loss in electrophysiological signal quality. The drive’s lightweight structure ( ≈ 3.5 g) leaves animal behavior largely unchanged during a variety of experimental paradigms. We demonstrate how the data collected with the Hybrid Drive allow state-of-the-art analysis in a series of experiments linking the spiking activity of CA1 pyramidal layer neurons to the oscillatory activity across hippocampal layers. Our new device fits a gap in the existing technology and increases the range and precision of questions that can be addressed about neural computations in freely behaving mice.