QY
Qinqin Yu
Author with expertise in Evolutionary Dynamics of Genetic Adaptation and Mutation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
21
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
53

Lineage frequency time series reveal elevated levels of genetic drift in SARS-CoV-2 transmission in England

Qinqin Yu et al.Nov 22, 2022
+3
T
J
Q
Abstract Genetic drift in infectious disease transmission results from randomness of transmission and host recovery or death. The strength of genetic drift for SARS-CoV-2 transmission is expected to be high due to high levels of superspreading, and this is expected to substantially impact disease epidemiology and evolution. However, we don’t yet have an understanding of how genetic drift changes over time or across locations. Furthermore, noise that results from data collection can potentially confound estimates of genetic drift. To address this challenge, we develop and validate a method to jointly infer genetic drift and measurement noise from time-series lineage frequency data. Our method is highly scalable to increasingly large genomic datasets, which overcomes a limitation in commonly used phylogenetic methods. We apply this method to over 490,000 SARS-CoV-2 genomic sequences from England collected between March 2020 and December 2021 by the COVID-19 Genomics UK (COG-UK) consortium and separately infer the strength of genetic drift for pre-B.1.177, B.1.177, Alpha, and Delta. We find that even after correcting for measurement noise, the strength of genetic drift is consistently, throughout time, higher than that expected from the observed number of COVID-19 positive individuals in England by 1 to 3 orders of magnitude, which cannot be explained by literature values of superspreading. Our estimates of genetic drift will be informative for parameterizing evolutionary models and studying potential mechanisms for increased drift. Author Summary The transmission of pathogens like SARS-CoV-2 is strongly affected by chance effects in the contact process between infected and susceptible individuals, collectively referred to as random genetic drift. We have an incomplete understanding of how genetic drift changes across time and locations. To address this gap, we developed a computational method that infers the strength of genetic drift from time series genomic data that corrects for non-biological noise and is computationally scalable to the large numbers of sequences available for SARS-CoV-2, overcoming a major challenge of existing methods. Using this method, we quantified the strength of genetic drift for SARS-CoV-2 transmission in England throughout time and across locations. These estimates constrain potential mechanisms and help parameterize models of SARS-CoV-2 evolution. More generally, the computational scalability of our method will become more important as increasingly large genomic datasets become more common.
53
Citation1
0
Save
57

The mutability of demographic noise in microbial range expansions

Qinqin Yu et al.Oct 28, 2020
+3
M
M
Q
Abstract Demographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude higher than the wild type. Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable phenotype of a population.
57
Citation1
0
Save
1

Rediversification Following Ecotype Isolation Reveals Hidden Adaptive Potential

Joao Ascensao et al.May 4, 2023
+3
K
J
J
Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about if communities can regenerate ecological diversity following species removal or extinction, and how the rediversified communities would compare to the original ones. Here we show that simple two-ecotype communities from the E. coli Long Term Evolution Experiment (LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexisting via negative frequency-dependent selection. Communities separated by more than 30,000 generations of evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of growth traits with the ecotype it replaces. However, the rediversified community is also different compared to the original community in ways relevant to the mechanism of ecotype coexistence, for example in stationary phase response and survival. We found substantial variation in the transcriptional states between the two original ecotypes, whereas the differences within the rediversified community were comparatively smaller, but with unique patterns of differential expression. Our results suggest that evolution may leave room for alternative diversification processes even in a maximally reduced community of only two strains. We hypothesize that the presence of alternative evolutionary pathways may be even more pronounced in communities of many species, highlighting an important role for perturbations, such as species removal, in evolving ecological communities.