CM
Carla Mattos
Author with expertise in Molecular Mechanisms of Ras Signaling Pathways
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
16,270
h-index:
37
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins

Alexander MacKerell et al.Apr 1, 1998
New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent-solvent, solvent-solute, and solute-solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.
0

Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques

Ryan Brenke et al.Jan 28, 2009
The binding sites of proteins generally contain smaller regions that provide major contributions to the binding free energy and hence are the prime targets in drug design. Screening libraries of fragment-sized compounds by NMR or X-ray crystallography demonstrates that such 'hot spot' regions bind a large variety of small organic molecules, and that a relatively high 'hit rate' is predictive of target sites that are likely to bind drug-like ligands with high affinity. Our goal is to determine the 'hot spots' computationally rather than experimentally.We have developed the FTMAP algorithm that performs global search of the entire protein surface for regions that bind a number of small organic probe molecules. The search is based on the extremely efficient fast Fourier transform (FFT) correlation approach which can sample billions of probe positions on dense translational and rotational grids, but can use only sums of correlation functions for scoring and hence is generally restricted to very simple energy expressions. The novelty of FTMAP is that we were able to incorporate and represent on grids a detailed energy expression, resulting in a very accurate identification of low-energy probe clusters. Overlapping clusters of different probes are defined as consensus sites (CSs). We show that the largest CS is generally located at the most important subsite of the protein binding site, and the nearby smaller CSs identify other important subsites. Mapping results are presented for elastase whose structure has been solved in aqueous solutions of eight organic solvents, and we show that FTMAP provides very similar information. The second application is to renin, a long-standing pharmaceutical target for the treatment of hypertension, and we show that the major CSs trace out the shape of the first approved renin inhibitor, aliskiren.FTMAP is available as a server at http://ftmap.bu.edu/.
3

Allosteric site variants affect GTP hydrolysis on RAS

Christian Johnson et al.May 29, 2023
Abstract RAS GTPases are proto-oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP-bound and GTP-bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4 and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF-RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of poorly understood mutations that occur in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP-bound state of RAS.
3
Citation1
0
Save