BL
Bao‐Li Loza
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
0
h-index:
9
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic And Epigenetic Fine Mapping Of Complex Trait Associated Loci In The Human Liver

Minal Çalışkan et al.Oct 8, 2018
Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory regions of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the impacts of genetic variation that direct histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 77 GWAS loci that have been associated with at least one complex phenotype. Our results contribute to the repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.
1

Integrative Multi-omic Profiling of Two Human Decedents Receiving Pig Heart Xenografts Reveals Strong Perturbations in Early Immune-Cell and Cellular Metabolism Responses

Eloi Schmauch et al.Jun 8, 2023
ABSTRACT Background Recent advances in xenotransplantation in living and decedent humans using pig xenografts have laid promising groundwork towards future emergency use and first in human trials. Major obstacles remain though, including a lack of knowledge of the genetic incompatibilities between pig donors and human recipients which may led to harmful immune responses against the xenograft or dysregulation of normal physiology. In 2022 two pig heart xenografts were transplanted into two brain-dead human decedents with a minimized immunosuppression regime, primarily to evaluate onset of hyper-acute antibody mediated rejection and sustained xenograft function over 3 days. Methods We performed multi-omic profiling to assess the dynamic interactions between the pig and human genomes in the first two pig heart-xenografts transplants into human decedents. To assess global and specific biological changes that may correlate with immune-related outcomes and xenograft function, we generated transcriptomic, lipidomic, proteomic and metabolomics datasets, across blood and tissue samples collected every 6 hours over the 3-day procedures. Results Single-cell datasets in the 3-day pig xenograft-decedent models show dynamic immune activation processes. We observe specific scRNA-seq, snRNA-seq and geospatial transcriptomic changes of early immune-activation leading to pronounced downstream T-cell activity and hallmarks of early antibody mediated rejection (AbMR) and/or ischemia reperfusion injury (IRI) in the first xenograft recipient. Using longitudinal multiomic integrative analyses from blood in addition to antigen presentation pathway enrichment, we also observe in the first xeno-heart recipient significant cellular metabolism and liver damage pathway changes that correlate with profound physiological dysfunction whereas, these signals are not present in the other xenograft recipient. Conclusions Single-cell and multiomics approaches reveal fundamental insights into early molecular immune responses indicative of IRI and/or early AbMR in the first human decedent, which was not evident in the conventional histological evaluations.
1

LoFTK: a framework for fully automated calculation of predicted Loss-of-Function variants

Abdulrahman Alasiri et al.Aug 10, 2021
Abstract Motivation Loss-of-Function (LoF) variants in human genes are important due to their impact on clinical phenotypes and frequent occurrence in the genomes of healthy individuals. Current approaches predict high-confidence LoF variants without identifying the specific genes or the number of copies they affect. Moreover, there is a lack of methods for detecting knockout genes caused by compound heterozygous (CH) LoF variants. Results We have developed the Loss-of-Function ToolKit (LoFTK), which allows efficient and automated prediction of LoF variants from both genotyped and sequenced genomes. LoFTK enables the identification of genes that are inactive in one or two copies and provides summary statistics for downstream analyses. LoFTK can identify CH LoF variants, which result in LoF genes with two copies lost. Using data from parents and offspring we show that 96% of CH LoF genes predicted by LoFTK in the offspring have the respective alleles donated by each parent. Availability and implementation LoFTK is an open source software and is freely available to non-commercial users at https://github.com/CirculatoryHealth/LoFTK Contact j.vansetten@umcutrecht.nl Supplementary information Supplementary data are available at Bioinformatics online.