BK
Brendan Keating
Author with expertise in Xenotransplantation Research and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(59% Open Access)
Cited by:
1,589
h-index:
60
/
i10-index:
143
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies

Brendan Keating et al.Oct 30, 2008
+57
S
S
B
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
0
Citation384
0
Save
0

Return of Genomic Results to Research Participants: The Floor, the Ceiling, and the Choices In Between

Gail Jarvik et al.May 8, 2014
+97
J
L
G
As more research studies incorporate next-generation sequencing (including whole-genome or whole-exome sequencing), investigators and institutional review boards face difficult questions regarding which genomic results to return to research participants and how. An American College of Medical Genetics and Genomics 2013 policy paper suggesting that pathogenic mutations in 56 specified genes should be returned in the clinical setting has raised the question of whether comparable recommendations should be considered in research settings. The Clinical Sequencing Exploratory Research (CSER) Consortium and the Electronic Medical Records and Genomics (eMERGE) Network are multisite research programs that aim to develop practical strategies for addressing questions concerning the return of results in genomic research. CSER and eMERGE committees have identified areas of consensus regarding the return of genomic results to research participants. In most circumstances, if results meet an actionability threshold for return and the research participant has consented to return, genomic results, along with referral for appropriate clinical follow-up, should be offered to participants. However, participants have a right to decline the receipt of genomic results, even when doing so might be viewed as a threat to the participants' health. Research investigators should be prepared to return research results and incidental findings discovered in the course of their research and meeting an actionability threshold, but they have no ethical obligation to actively search for such results. These positions are consistent with the recognition that clinical research is distinct from medical care in both its aims and its guiding moral principles.
0
Citation352
0
Save
0

The landscape of recombination in African Americans

Anjali Hinch et al.Jul 20, 2011
+78
N
A
A
Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10−245). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution. Genetic maps measure the probability of crossovers at each position in a genome and are valuable tools for the study of variation in populations. A genetic map has now been constructed using data from 18,000 African American individuals. Comparison with European genetic maps reveals more than 2,000 recombination hot spots that are active in people of West African ancestry but inactive in most Europeans. The probability of crossover at these hot spots is controlled at the PRDM9 locus. A 17-base-pair DNA sequence motif is enriched at these hot spots, a source of risk for disease-causing genomic rearrangements.
0
Citation340
0
Save
0

Genome-Wide Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African Americans: The NHLBI CARe Project

Guillaume Lettre et al.Feb 10, 2011
+57
T
C
G
Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia.
0
Citation311
0
Save
0

Results of Two Cases of Pig-to-Human Kidney Xenotransplantation

Robert Montgomery et al.May 19, 2022
+27
B
J
R
Xenografts from genetically modified pigs have become one of the most promising solutions to the dearth of human organs available for transplantation. The challenge in this model has been hyperacute rejection. To avoid this, pigs have been bred with a knockout of the alpha-1,3-galactosyltransferase gene and with subcapsular autologous thymic tissue.We transplanted kidneys from these genetically modified pigs into two brain-dead human recipients whose circulatory and respiratory activity was maintained on ventilators for the duration of the study. We performed serial biopsies and monitored the urine output and kinetic estimated glomerular filtration rate (eGFR) to assess renal function and xenograft rejection.The xenograft in both recipients began to make urine within moments after reperfusion. Over the 54-hour study, the kinetic eGFR increased from 23 ml per minute per 1.73 m2 of body-surface area before transplantation to 62 ml per minute per 1.73 m2 after transplantation in Recipient 1 and from 55 to 109 ml per minute per 1.73 m2 in Recipient 2. In both recipients, the creatinine level, which had been at a steady state, decreased after implantation of the xenograft, from 1.97 to 0.82 mg per deciliter in Recipient 1 and from 1.10 to 0.57 mg per deciliter in Recipient 2. The transplanted kidneys remained pink and well-perfused, continuing to make urine throughout the study. Biopsies that were performed at 6, 24, 48, and 54 hours revealed no signs of hyperacute or antibody-mediated rejection. Hourly urine output with the xenograft was more than double the output with the native kidneys.Genetically modified kidney xenografts from pigs remained viable and functioning in brain-dead human recipients for 54 hours, without signs of hyperacute rejection. (Funded by Lung Biotechnology.).
0
Citation195
0
Save
1

Early detection of SARS‐CoV‐2 and other infections in solid organ transplant recipients and household members using wearable devices

Brendan Keating et al.May 5, 2021
+42
E
E
B
Transplant InternationalVolume 34, Issue 6 p. 1019-1031 ReviewOpen Access Early detection of SARS-CoV-2 and other infections in solid organ transplant recipients and household members using wearable devices Brendan J. Keating, Corresponding Author Brendan J. Keating [email protected] orcid.org/0000-0002-3320-3723 Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Correspondence Brendan J. Keating D.Phil, Division of Transplantation, Department of Surgery, University of Pennsylvania, Office 414A Stemmler Building, 3450 Hamilton Walk, Philadelphia PA, 19104, USA. Tel: +1 267-760-4507; fax: +1 215-662-2244; e-mail: [email protected]Search for more papers by this authorEyas H. Mukhtar, Eyas H. Mukhtar Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric D. Elftmann, Eric D. Elftmann Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorFeyisope R. Eweje, Feyisope R. Eweje Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorHui Gao, Hui Gao Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorLina I. Ibrahim, Lina I. Ibrahim Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorRanganath G. Kathawate, Ranganath G. Kathawate Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorAlexander C. Lee, Alexander C. Lee Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric H. Li, Eric H. Li Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorKrista A. Moore, Krista A. Moore Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorNikhil Nair, Nikhil Nair Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorVenkata Chaluvadi, Venkata Chaluvadi Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorJanaiya Reason, Janaiya Reason Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorFrancesca Zanoni, Francesca Zanoni Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorAlexander T. Honkala, Alexander T. Honkala Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmein K. Al-Ali, Amein K. Al-Ali Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaSearch for more papers by this authorFatima Abdullah Alrubaish, Fatima Abdullah Alrubaish Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorMaha Ahmad Al-Mozaini, Maha Ahmad Al-Mozaini Immunocompromised Host Research, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorFahad A. Al-Muhanna, Fahad A. Al-Muhanna Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorKhaldoun Al-Romaih, Khaldoun Al-Romaih National Centre of Genomic Technology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorSamuel B. Goldfarb, Samuel B. Goldfarb Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRyan Kellogg, Ryan Kellogg Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorKrzysztof Kiryluk, Krzysztof Kiryluk Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorSarah J. Kizilbash, Sarah J. Kizilbash Department of Pediatrics, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorTaisa J. Kohut, Taisa J. Kohut Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorJuhi Kumar, Juhi Kumar Weill Cornell Medical College, New York, NY, USASearch for more papers by this authorMatthew J. O'Connor, Matthew J. O'Connor Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorElizabeth B. Rand, Elizabeth B. Rand Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRobert R. Redfield, Robert R. Redfield Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorBenjamin Rolnik, Benjamin Rolnik Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorJoseph Rossano, Joseph Rossano Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPablo G. Sanchez, Pablo G. Sanchez Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USASearch for more papers by this authorArash Alavi, Arash Alavi Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmir Bahmani, Amir Bahmani Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorGireesh K. Bogu, Gireesh K. Bogu Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAndrew W. Brooks, Andrew W. Brooks Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAhmed A Metwally, Ahmed A Metwally Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorTejas Mishra, Tejas Mishra Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorStephen D. Marks, Stephen D. Marks Great Ormond Street Hospital for Children, NHS Foundation Trust London, London, UK NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, London, UKSearch for more papers by this authorRobert A. Montgomery, Robert A. Montgomery New York University Langone Transplant Institute, New York, NY, USASearch for more papers by this authorJay A. Fishman, Jay A. Fishman Transplant Infectious Disease Program, Infectious Disease Division, and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USASearch for more papers by this authorSandra Amaral, Sandra Amaral Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPamala A. Jacobson, Pamala A. Jacobson Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorMeng Wang, Meng Wang Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorMichael P. Snyder, Michael P. Snyder Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this author Brendan J. Keating, Corresponding Author Brendan J. Keating [email protected] orcid.org/0000-0002-3320-3723 Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Correspondence Brendan J. Keating D.Phil, Division of Transplantation, Department of Surgery, University of Pennsylvania, Office 414A Stemmler Building, 3450 Hamilton Walk, Philadelphia PA, 19104, USA. Tel: +1 267-760-4507; fax: +1 215-662-2244; e-mail: [email protected]Search for more papers by this authorEyas H. Mukhtar, Eyas H. Mukhtar Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric D. Elftmann, Eric D. Elftmann Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorFeyisope R. Eweje, Feyisope R. Eweje Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorHui Gao, Hui Gao Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorLina I. Ibrahim, Lina I. Ibrahim Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorRanganath G. Kathawate, Ranganath G. Kathawate Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorAlexander C. Lee, Alexander C. Lee Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorEric H. Li, Eric H. Li Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorKrista A. Moore, Krista A. Moore Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorNikhil Nair, Nikhil Nair Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorVenkata Chaluvadi, Venkata Chaluvadi Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorJanaiya Reason, Janaiya Reason Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorFrancesca Zanoni, Francesca Zanoni Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorAlexander T. Honkala, Alexander T. Honkala Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmein K. Al-Ali, Amein K. Al-Ali Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaSearch for more papers by this authorFatima Abdullah Alrubaish, Fatima Abdullah Alrubaish Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorMaha Ahmad Al-Mozaini, Maha Ahmad Al-Mozaini Immunocompromised Host Research, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorFahad A. Al-Muhanna, Fahad A. Al-Muhanna Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi ArabiaSearch for more papers by this authorKhaldoun Al-Romaih, Khaldoun Al-Romaih National Centre of Genomic Technology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi ArabiaSearch for more papers by this authorSamuel B. Goldfarb, Samuel B. Goldfarb Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRyan Kellogg, Ryan Kellogg Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorKrzysztof Kiryluk, Krzysztof Kiryluk Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USASearch for more papers by this authorSarah J. Kizilbash, Sarah J. Kizilbash Department of Pediatrics, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorTaisa J. Kohut, Taisa J. Kohut Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorJuhi Kumar, Juhi Kumar Weill Cornell Medical College, New York, NY, USASearch for more papers by this authorMatthew J. O'Connor, Matthew J. O'Connor Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorElizabeth B. Rand, Elizabeth B. Rand Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorRobert R. Redfield, Robert R. Redfield Division of Transplantation, Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USASearch for more papers by this authorBenjamin Rolnik, Benjamin Rolnik Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorJoseph Rossano, Joseph Rossano Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPablo G. Sanchez, Pablo G. Sanchez Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USASearch for more papers by this authorArash Alavi, Arash Alavi Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAmir Bahmani, Amir Bahmani Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorGireesh K. Bogu, Gireesh K. Bogu Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAndrew W. Brooks, Andrew W. Brooks Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorAhmed A Metwally, Ahmed A Metwally Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorTejas Mishra, Tejas Mishra Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorStephen D. Marks, Stephen D. Marks Great Ormond Street Hospital for Children, NHS Foundation Trust London, London, UK NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health, London, UKSearch for more papers by this authorRobert A. Montgomery, Robert A. Montgomery New York University Langone Transplant Institute, New York, NY, USASearch for more papers by this authorJay A. Fishman, Jay A. Fishman Transplant Infectious Disease Program, Infectious Disease Division, and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USASearch for more papers by this authorSandra Amaral, Sandra Amaral Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USASearch for more papers by this authorPamala A. Jacobson, Pamala A. Jacobson Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USASearch for more papers by this authorMeng Wang, Meng Wang Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this authorMichael P. Snyder, Michael P. Snyder Department of Genetics, Stanford University School of Medicine, Stanford, CA, USASearch for more papers by this author First published: 18 March 2021 https://doi.org/10.1111/tri.13860AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Summary The increasing global prevalence of SARS-CoV-2 and the resulting COVID-19 disease pandemic pose significant concerns for clinical management of solid organ transplant recipients (SOTR). Wearable devices that can measure physiologic changes in biometrics including heart rate, heart rate variability, body temperature, respiratory, activity (such as steps taken per day) and sleep patterns, and blood oxygen saturation show utility for the early detection of infection before clinical presentation of symptoms. Recent algorithms developed using preliminary wearable datasets show that SARS-CoV-2 is detectable before clinical symptoms in >80% of adults. Early detection of SARS-CoV-2, influenza, and other pathogens in SOTR, and their household members, could facilitate early interventions such as self-isolation and early clinical management of relevant infection(s). Ongoing studies testing the utility of wearable devices such as smartwatches for early detection of SARS-CoV-2 and other infections in the general population are reviewed here, along with the practical challenges to implementing these processes at scale in pediatric and adult SOTR, and their household members. The resources and logistics, including transplant-specific analyses pipelines to account for confounders such as polypharmacy and comorbidities, required in studies of pediatric and adult SOTR for the robust early detection of SARS-CoV-2, and other infections are also reviewed. Introduction Post-transplant infectious disease complications are a leading cause of mortality in solid organ transplant recipients (SOTR) [1, 2. In particular, complications of respiratory infections have been shown to have devastating consequences in SOTR, with earlier diagnosis and treatment resulting in better outcomes [3. Recent prospective multicenter studies in adult SOTR with clinically managed influenza infection showed ~66–71% of recipients required hospitalization with >30% developing pneumonia and 11–16% requiring intensive care unit (ICU) admission with mortality rates of 4–4.6% [4, 5. Notably, SOTR who received antiviral treatment within 48 hours of influenza A (H1N1) symptom presentation showed decreased rates of ICU admission (8%) compared to those who received treatment after 48 h (22%) as well as decreased incidence of hospital admission and mechanical ventilation [4. The recent COVID-19 pandemic presents increased risk of severe SARS-CoV-2 infection in the immunosuppressed SOTR. Literature reviews show 16–28% COVID-related mortality rates in SOTR [6-8, although larger studies are needed to dissect known comorbidity/risk factors. The mean incubation period of SARS-CoV-2 reported in large studies varies from 5.7 days (95% CI, 5.1–6.4) to 7.7 days (95% CI 7.02–8.53) [9, 10. This period is longer than the median incubation periods for other common respiratory viral infections: influenza B = 0.6 days (95% CI 0.5–0.6); influenza A = 1.4 days (95% CI 1.3–1.5); rhinovirus = 1.9 days (95% CI 1.4–2.4); parainfluenza = 2.6 days (95% CI 2·1–3·1), SARS-CoV-1 = 4.0 days (95% CI 3·6–4·4); respiratory syncytial virus (RSV) = 4.4 days (95% CI 3.9–4.9) and adenovirus = 5.6 days (95% CI 4·8–6·3) [11. Furthermore, a number of recent studies have shown prolonged viral shedding, and meta-analyses show that SOTRs have higher viral burdens of SARS-CoV-2 [12-14 Importantly, a number of studies have estimated that up to 50% of individuals infected with SAR-CoV-2 have asymptomatic infection courses, which significantly increases the risk of viral spread in a household or care center [15, 16. The mean serial interval, a key parameter for assessing the dynamics of a disease, has been shown to range from 3.03 to 7.6 days for SAR-CoV-2 between the initial infectious person and the person they infect, indicating that there is ample time for transmission of SARS-CoV-2 within a household, or care facility, while individuals are in pre-symptomatic or asymptomatic phases of infection [17. Sequencing of airway microbiota in pneumonia patients with COVID-19 (n = 62) and without COVID-19 (n = 125) showed COVID-19 patients had more perturbed airway microbiota with identification of other potential pathogen in 47% of cases, of which 58% were respiratory viruses. In nasopharyngeal and sputum samples from COVID-19 patients, enrichment of other putative pathogenic microbes was identified, including respiratory syncytial viruses (RSV), influenza, and other opportunistic pathogen [18. Therefore, early detection of infection and early therapeutic intervention with promising corticosteroid and antibody-based regimens may be essential to mitigating the consequences of severe COVID-19 infection in SOTR. As of January 20th, 2021, over 291 million SARS-CoV-2 viral tests were performed in the United States and ~1.361 billion worldwide [19. With an asymptomatic incubation period up to ~14 days and wide heterogeneity in clinical symptoms, early detection of SARS-CoV-2 is imperative, yet there remain major barriers to widespread and continuous testing. Most existing testing platforms are not practical to administer on a daily/weekly basis due to transmission risks and significant logistical barriers. Furthermore, the results of diagnostic tests can take several days restricting the window for early intervention, contact tracing, and impeding data-driven healthcare decisions for high-risk individuals [20. Finally, there is understandable reluctance from SOTR and their families to enter healthcare settings for routine visits due to potential nosocomial SARS-CoV-2 exposure. The lengthy asymptomatic incubation period of SARS-CoV-2 and its remarkable transmissibility, combined with a presentation altered by immunosuppression, and polypharmacy among transplant populations, reflect the urgent need for tools that can detect pre-symptomatic infection. As SARS-CoV-2 sero-prevalence rises, more SOTR and family members will become infected, and many cases may not be detected early enough for effective intervention. Wearable devices In the last decade, advances in wearable devices such as fitness tracker smartwatches allow a range of important phenotypes to be measured and offer the potential to shift clinical care from being reactive to proactive. A study conducted in June 2019 showed that ~21% of the US population have, and regularly wear, a smartwatch55, and this trend appears to be increasing as they become more affordable. Generally, an increased heart rate (HR) of 10 beats per minute in children equates to an increase of one degree centigrade from their baseline temperature [21. While activity can impact HR short-term, prolonged periods of sustained HR increase over 12–36 hours may indicate a physiological reaction to infection. With the ability to monitor physiological parameters such as HR, body temperature, oxygen saturation (SpO2), blood pressure (BP), sleep and respiratory patterns, and electro-dermal activity, commercially available wearables provide the opportunity for real-time, continuous infection monitoring to complement conventional diagnostic tests. There are many commercially available wrist watches that utilize photoplethysmography (PPG) sensors which shine light into the skin and measure the reflection back to determine blood flow and color (green light is absorbed by hemoglobin). These blood flow measurements are used to determine HR, and to estimate BP and SpO2 [22. Inflatable wrist-cuffs can measure arterial pressure to find Oscillometric BP and some wearable devices use single-lead electrocardiography (ECG) to detect heart rhythm, for example, Apple Watch. Over the past few years, wearable devices have been rigorously explored for the detection and/or monitoring of pathologies across a range of diseases, including atrial fibrillation, Parkinson's disease, convulsive seizure onset, and continuous glucose monitoring in individuals with type 2 Diabetes [23-26. A growing number of studies have shown that wearable devices are also a powerful and promising tool for infection detection. While wearable technologies have yet to be extensively used for monitoring of SOTRs, a study of 88 Australian adult CKD and kidney transplant recipients, a clinical-grade wearable device measuring peripheral body temperature with an infrared thermopile correctly identified infection in 65 patients with 80% sensitivity and 98% specificity [27. Another study found that Bluetooth-enabled devices for at-home physiological monitoring of lung transplant recipients resulted in lower incidences of hospital readmissions [28. The at-home monitoring consisted of daily updates of BP, HR, weight, blood glucose, SpO2, pulmonary function, and activity levels, which could be measured using wearable devices. The rate of hospital readmission and readmission days with home monitoring versus standard care was 56% and 46% respectively, demonstrating the potential value of consistently monitoring SOTRs with wearable devices to reduce hospitalizations. One of the first studies to report using wearables to detect SARS-CoV-2 infection via smartwatches was published recently by a number of co-authors of this manuscript. Using primarily retrospective data from ~5,300 wearable devices, a focus was placed on individuals wearing similar devices where sufficient continuous and robust measurements were available [29. The algorithms studied three parameters: increased resting HR (RHR) relative to previous "healthy day" windows; increased HR to activity (step count) ratio; and sleep measures including sleep duration and time in wake/light/deep/REM stages. Wearables data from 32 individuals pre-, peri-, and post-SARS-CoV-2 confirmed infection, identified aberrant physiological signals associated with illness using various algorithms including proof-of-concept for real-time disease detection. The study showed that it is possible to identify infection prior to symptomatic onset using just three parameters using consumer-grade wearable devices. A similar study demonstrated that combining symptom data (fatigue, breathing difficulty, fever, etc.) with wearable sensor data (resting HR, sleep, and activity) resulted in greater ability to discriminate between COVID-19 and non-COVID-19 infection compared to symptoms alone (AUC 0.80 vs. 0.71, P < 0.01) [30. The recent TemPredict study, using Oura wearable ring data from 65,000 subjects, examined 50 COVID-19 confirmed cases and showed the ability to detect early signs of fever in 93% of the cases on average 3 days before symptoms manifest
4

Gut microbiota analyses of Saudi populations for type 2 diabetes-related phenotypes reveals significant association

Fahd Al-Muhanna et al.Oct 25, 2021
+21
A
A
F
Abstract Large-scale gut microbiome sequencing has revealed key links between microbiome dysfunction and metabolic diseases such as T2D. To date, these efforts have largely focused on Western populations, with few studies assessing T2D microbiota associations in Middle Eastern communities where T2D prevalence is now over 20%. We analyzed the composition of stool 16S rRNA from 461 T2D and 119 non-T2Dparticipants from the Eastern Province of Saudi Arabia. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples based on diabetes status and glucose level. We observed overall positive enrichment within diabetics compared to healthy individuals and amongst diabetic participants; those with high glucose levels exhibited slightly more positive enrichment compared to those at lower risk of fasting hyperglycemia. In particular, the genus Firmicutes was upregulated in diabetic participants compared to non-diabetic participants, and T2D was associated with an elevated Firmicutes/Bacteroidetes ratio, consistent with previous findings. Based on diabetes status and glucose levels of Saudi participants, relatively stable differences in stool composition were perceived by differential abundance and alpha diversity measures. Author summary The rates of Type 2 diabetes (T2D) in Saudi Arabia have risen dramatically in the last several decades due to socio-economic changes resulting in changes in dietary and sedentary lifestyles. This emergence has grown more rapidly and affects larger proportions of the population with estimates of T2D prevalence impacting 25% of the population. There is a paucity of microbiome data from Middle Eastern populations, and previous studies have been conducted on small sample sizes. Here we report on the first-ever characterization of gut microbiota T2D versus non-T2D and largest microbiome study ever conducted in a Middle Eastern country. The datasets from this study are important to create a regional reference T2D-microbiome catalogue which will propel the understanding of regional gut flora which are associated with T2D development. Based on T2D status and quantified glucose levels of Middle Eastern participants, relatively stable differences in stool composition were observed by differential abundance and alpha diversity measures. Comparing overlapping and varying patterns in gut microbiota with other studies is critical to assessing novel treatment options in light of a rapidly growing T2D health epidemic.
4
Citation1
0
Save
0

V-312.6: Case studies in renal xenotransplantation pharmacology: pharmacokinetics and pharmacodynamics of tacrolimus, mycophenolate mofetil, and vancomycin.

Karen Khalil et al.Sep 1, 2024
+7
R
J
K
0

447.7: Multi-omic profiling in a human decedent receiving a pig kidney xenograft reveals concerted immune responses preceding a biopsy confirmed rejection event.

Brendan Keating et al.Sep 1, 2024
+7
J
K
B
0

327.7: Multi-omics profiling in human decedents receiving genetically modified pig hearts reveals hallmarks of perioperative cardiac xenograft dysfunction.

Brendan Keating et al.Sep 1, 2024
+7
J
E
B
Load More