JL
Jintian Lyu
Author with expertise in Immunobiology of Dendritic Cells
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Mechanical force regulates ligand binding and function of PD-1

Kaitao Li et al.Aug 15, 2023
Immune checkpoint blockade targeting PD-1 shows great success in cancer therapy. However, the mechanism of how ligand binding initiates PD-1 signaling remains unclear. As prognosis markers of multiple cancers, soluble PD-L1 is found in patient sera and can bind PD-1, but fails to suppress T cell function. This and our previous observations that T cells exert endogenous forces on PD-1-PD-L2 bonds prompt the hypothesis that mechanical force might be critical to PD-1 triggering, which is missing in the soluble ligand case due to the lack of mechanical support afforded by surface-anchored ligand. Here we show that PD-1 function is eliminated or reduced when mechanical support on ligand is removed or dampened, respectively. Force spectroscopic analysis reveals that PD-1 forms catch bonds with both PD-Ligands <7 pN where force prolongs bond lifetime, but slip bonds >8 pN where force accelerates dissociation. Steered molecular dynamics finds PD-1-PD-L2 complex very sensitive to force due to the two molecules' "side-to-side" binding via β sheets. Pulling causes relative rotation and translation between the two molecules by stretching and aligning the complex along the force direction, yielding new atomic contacts not observed in the crystal structure. Compared to wild-type, PD-1 mutants targeting the force-induced new interactions maintain the same binding affinity but display lower rupture force, shorter bond lifetime, reduced tension, and most importantly, impaired capacity to suppress T cell activation. Our results uncover a mechanism for cells to probe the mechanical support of PD-1-PD-Ligand bonds using endogenous forces to regulate PD-1 triggering.
1
Citation2
0
Save
10

Mechanotransduction governs CD40 function and underlies X-linked Hyper IgM syndrome

Hyun-Kyu Choi et al.Jul 25, 2023
B cell maturation in germinal centers (GCs) depends on cognate interactions between the T and B cells. Upon interaction with CD40 ligand (CD40L) on T cells, CD40 delivers co-stimulatory signals alongside B cell antigen receptor (BCR) signaling to regulate affinity maturation and antibody class-switch during GC reaction. Mutations in CD40L disrupt interactions with CD40, which lead to abnormal antibody responses in immune deficiencies known as X-linked Hyper IgM syndrome (X-HIgM). Assuming that physical interactions between highly mobile T and B cells generate mechanical forces on CD40-CD40L bonds, we set out to study the B cell mechanobiology mediated by CD40-CD40L interaction. Using a suite of biophysical assays we find that CD40 forms catch bond with CD40L where the bond lasts longer at larger forces, B cells exert tension on CD40-CD40L bonds, and force enhances CD40 signaling and antibody class-switch. Significantly, X-HIgM CD40L mutations impair catch bond formation, suppress endogenous tension, and reduce force-enhanced CD40 signaling, leading to deficiencies in antibody class switch. Our findings highlight the critical role of mechanotransduction in CD40 function and provide insights into the molecular mechanisms underlying X-HIgM syndrome.
1

Tumor microenvironments impair T cell receptor affinity and function

Zhou Yuan et al.Sep 13, 2022
Abstract CD8 + T cells underpin effective anti-tumor immune responses in melanoma; however, their functions are attenuated due to various immunosuppressive factors in the tumor microenvironment (TME), resulting in disease progression. T cell function is elicited by the T cell receptor (TCR), which recognizes antigen peptide-major histocompatibility complex (pMHC) expressed on tumor cells via direct physical contact, i.e., two-dimensional (2D) interaction. TCR–pMHC 2D affinity plays a central role in antigen recognition and discrimination, and is sensitive to both the conditions of the T cell and the microenvironment in which it resides. Herein, we demonstrate that CD8 + T cells residing in TME have lower 2D TCR–pMHC bimolecular affinity and TCR–pMHC–CD8 trimolecular avidity, pull fewer TCR–pMHC bonds by endogenous forces, flux lower level of intracellular calcium in response to antigen stimulation, exhibit impaired in vivo activation, and show diminished anti-tumor effector function. These detrimental effects are localized in the tumor and tumor draining lymph node (TdLN), and affect both antigen-inexperienced and antigen-experienced CD8 + T cells irrespective of their TCR specificities. These findings implicate impaired antigen recognition as a mechanism of T cell dysfunction in the TME.