LE
Laura Etzel
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
3
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Cross-tissue comparison of telomere length and quality metrics of DNA among individuals aged 8 to 70 years

Sarah Wolf et al.Aug 21, 2023
Abstract Telomere length (TL) is an important biomarker of cellular aging, yet its links with health outcomes may be complicated by use of different tissues. We evaluated within- and between-individual variability in TL and quality metrics of DNA across five tissues using a cross-sectional dataset ranging from 8 to 70 years (N=197). DNA was extracted from all tissue cells using the Gentra Puregene DNA Extraction Kit. Absolute TL (aTL) in kilobase pairs was measured in buccal epithelial cells, saliva, dried blood spots (DBS), buffy coat, and peripheral blood mononuclear cells (PBMCs) using qPCR. aTL significantly shortened with age for all tissues except saliva and buffy coat, although buffy coat was available for a restricted age range (8 to 15 years). aTL did not significantly differ across blood-based tissues (DBS, buffy coat, PBMC), which had significantly longer aTL than buccal cells and saliva. Additionally, aTL was significantly correlated for the majority of tissue pairs, with partial Spearman’s correlations controlling for age and sex ranging from ⍴ = 0.18 to 0.51. We also measured quality metrics of DNA including integrity, purity, and quantity of extracted DNA from all tissues and explored whether controlling for DNA metrics improved predictions of aTL. We found significant tissue variation: DNA from blood-based tissues had high DNA integrity, more acceptable A260/280 and A260/230 values, and greater extracted DNA concentrations compared to buccal cells and saliva. Longer aTL was associated with lower DNA integrity, higher extracted DNA concentrations, and higher A260/230, particularly for saliva. Model comparisons suggested that incorporation of quality DNA metrics improves models of TL, although relevant metrics vary by tissue. These findings highlight the merits of using blood-based tissues and suggest that incorporation of quality DNA metrics as control variables in population-based studies can improve TL predictions, especially for more variable tissues like buccal and saliva.
1
Citation3
0
Save
0

Early-life adversity is associated with differential gene expression in response to acute psychological stress: preliminary findings

Idan Shalev et al.Aug 7, 2019
Objective: Exposure to early-life adversity (ELA) can result in long-term changes to physiological systems, which predispose individuals to negative health outcomes. This biological embedding of stress-responsive systems may operate via dysregulation of physiological resources in response to common stressors. The present study used a novel experimental design to test how young adults' exposure to ELA influence neuroendocrine and inflammatory responses to acute stress. Materials and methods: Participants were 12 males (mean age= 21.25), half of whom endorsed at least three significant adverse events up to age 18 years (‘ELA group’), and half who confirmed zero (‘controls’). Using a randomized within-subjects, between-groups experimental design, we induced acute psychosocial stress (Trier Social Stress Test, TSST), and included a no-stress control condition one week apart. During these sessions, we obtained repeated measurements of physiological reactivity, gene expression of NR3C1, FKBP5 and NFKB1, and plasma levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNFα) over a 4-hour window post-test. Results: The ELA group evinced significantly higher cortisol response and lower NR3C1 gene expression in response to the TSST compared with controls, while no differences were observed in the no-stress condition. Cortisol and group status interacted such that increase in cortisol predicted increase in both NR3C1 and NFKB1 expression among controls, but decrease in the ELA group. For pro-inflammatory cytokines, only IL-6 increased significantly in response to the TSST, with no differences between the two groups. Conclusion: Overall, we provide preliminary findings for the biological embedding of stress via a dynamic and dysregulated pattern evidenced in response to acute psychosocial stress. ELA may program physiological systems in a maladaptive manner more likely to manifest during times of duress, predisposing individuals to the negative health consequences of everyday stressors. Future studies with larger sample size including both males and females are needed to replicate these findings.
1

Cross-Tissue Comparison of Epigenetic Aging Clocks in Humans

Abner Apsley et al.Jul 19, 2024
Epigenetic clocks are a common group of tools used to measure biological aging - the progressive deterioration of cells, tissues and organs. Epigenetic clocks have been trained almost exclusively using blood-based tissues but there is growing interest in estimating epigenetic age using less-invasive oral-based tissues (i.e., buccal or saliva) in both research and commercial settings. However, differentiated cell types across body tissues exhibit unique DNA methylation landscapes and age-related alterations to the DNA methylome. Applying epigenetic clocks derived from blood-based tissues to estimate epigenetic age of oral-based tissues may introduce biases. We tested the within-person comparability of common epigenetic clocks across five tissue types: buccal epithelial, saliva, dry blood spots, buffy coat (i.e., leukocytes), and peripheral blood mononuclear cells. We tested 284 distinct tissue samples from 83 individuals aged 9-70 years. Overall, there were significant within-person differences in epigenetic clock estimates from oral-based versus blood-based tissues, with average differences of almost 30 years observed in some age clocks. In addition, most epigenetic clock estimates of blood-based tissues exhibited low correlation with estimates from oral-based tissues despite controlling for cellular proportions and other technical factors. Our findings indicate that application of blood-derived epigenetic clocks in oral-based tissues may not yield comparable estimates of epigenetic age, highlighting the need for careful consideration of tissue type when estimating epigenetic age.
0

Cross‐tissue comparison of epigenetic aging clocks in humans

Abner Apsley et al.Jan 9, 2025
Abstract Epigenetic clocks are a common group of tools used to measure biological aging—the progressive deterioration of cells, tissues, and organs. Epigenetic clocks have been trained almost exclusively using blood‐based tissues, but there is growing interest in estimating epigenetic age using less‐invasive oral‐based tissues (i.e., buccal or saliva) in both research and commercial settings. However, differentiated cell types across body tissues exhibit unique DNA methylation landscapes and age‐related alterations to the DNA methylome. Applying epigenetic clocks derived from blood‐based tissues to estimate epigenetic age of oral‐based tissues may introduce biases. We tested the within‐person comparability of common epigenetic clocks across five tissue types: buccal epithelial, saliva, dry blood spots, buffy coat (i.e., leukocytes), and peripheral blood mononuclear cells. We tested 284 distinct tissue samples from 83 individuals aged 9–70 years. Overall, there were significant within‐person differences in epigenetic clock estimates from oral‐based versus blood‐based tissues, with average differences of almost 30 years observed in some age clocks. In addition, most epigenetic clock estimates of blood‐based tissues exhibited low correlation with estimates from oral‐based tissues despite controlling for cellular proportions and other technical factors. Notably, the Skin and Blood clock exhibited the greatest concordance across all tissue types, indicating its unique ability to estimate chronological age in oral‐ and blood‐based tissues. Our findings indicate that application of blood‐derived epigenetic clocks in oral‐based tissues may not yield comparable estimates of epigenetic age, highlighting the need for careful consideration of tissue type when estimating epigenetic age.