SB
Simon Berger
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
3,678
h-index:
23
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood

Simon Berger et al.Mar 23, 2011
We present an evolutionary placement algorithm (EPA) and a Web server for the rapid assignment of sequence fragments (short reads) to edges of a given phylogenetic tree under the maximum-likelihood model. The accuracy of the algorithm is evaluated on several real-world data sets and compared with placement by pair-wise sequence comparison, using edit distances and BLAST. We introduce a slow and accurate as well as a fast and less accurate placement algorithm. For the slow algorithm, we develop additional heuristic techniques that yield almost the same run times as the fast version with only a small loss of accuracy. When those additional heuristics are employed, the run time of the more accurate algorithm is comparable with that of a simple BLAST search for data sets with a high number of short query sequences. Moreover, the accuracy of the EPA is significantly higher, in particular when the sample of taxa in the reference topology is sparse or inadequate. Our algorithm, which has been integrated into RAxML, therefore provides an equally fast but more accurate alternative to BLAST for tree-based inference of the evolutionary origin and composition of short sequence reads. We are also actively developing a Web server that offers a freely available service for computing read placements on trees using the EPA.
0
Citation504
0
Save
0

Experimental realization of non-Abelian non-adiabatic geometric gates

A. Abdumalikov et al.Apr 1, 2013
The geometric aspects of quantum mechanics are underlined most prominently by the concept of geometric phases, which are acquired whenever a quantum system evolves along a closed path in Hilbert space. The geometric phase is determined only by the shape of this path and is -- in its simplest form -- a real number. However, if the system contains degenerate energy levels, matrix-valued geometric phases, termed non-abelian holonomies, can emerge. They play an important role for the creation of synthetic gauge fields in cold atomic gases and the description of non-abelian anyon statistics. Moreover, it has been proposed to exploit non-abelian holonomic gates for robust quantum computation. In contrast to abelian geometric phases, non-abelian ones have been observed only in nuclear quadrupole resonance experiments with a large number of spins and without fully characterizing the geometric process and its non-commutative nature. Here, we realize non-abelian holonomic quantum operations on a single superconducting artificial three-level atom by applying a well controlled two-tone microwave drive. Using quantum process tomography, we determine fidelities of the resulting non-commuting gates exceeding 95 %. We show that a sequence of two paths in Hilbert space traversed in different order yields inequivalent transformations, which is an evidence for the non-abelian character of the implemented holonomic quantum gates. In combination with two-qubit operations, they form a universal set of gates for holonomic quantum computation.
5

Microfluidic-based imaging of complete C. elegans larval development

Simon Berger et al.Apr 1, 2021
Abstract Several microfluidic-based methods for long-term C. elegans imaging have been introduced in recent years, allowing real-time observation of previously inaccessible processes. The existing methods either permit imaging across multiple larval stages without maintaining a stable worm orientation, or allow for very good immobilization but are only suitable for shorter experiments. Here, we present a novel microfluidic imaging method, which allows parallel live-imaging across multiple larval stages, while delivering excellent immobilization and maintaining worm orientation and identity over time. This is achieved by employing an array of microfluidic trap channels carefully tuned to maintain worms in a stable orientation, while allowing growth and molting to occur. Immobilization is supported by an active hydraulic valve, which presses worms onto the cover glass during image acquisition, with the animals remaining free for most of an experiment. Excellent quality images can be acquired of multiple worms in parallel, with little impact of the imaging method on worm viability or developmental timing. The capabilities of this methodology are demonstrated by observing the hypodermal seam cell divisions and, for the first time, the entire process of vulval development from induction to the end of morphogenesis. Moreover, we demonstrate RNAi on-chip, which allows for perturbation of dynamic developmental processes, such as basement membrane breaching during anchor cell invasion.
5
Citation2
0
Save
1

Reciprocal EGFR signaling in the Anchor Cell ensures precise inter-organ connection during C. elegans vulval morphogenesis

Silvan Spiri et al.Jun 16, 2021
Abstract During C. elegans vulval development, the uterine anchor cell (AC) first secretes an epidermal growth factor (EGF) to specify the vulval cell fates and then invades into the underlying vulval epithelium. Thereby, the AC establishes direct contact with the invaginating 1° vulF cells and attaches the developing uterus to the vulva. The signals involved and the exact sequence of events joining these two organs are not fully understood. Using a conditional let-23 egf receptor (EGFR) allele along with novel microfluidic short- and long-term imaging methods, we discovered a specific function of the EGFR in the AC during vulval lumen morphogenesis. Tissue-specific inactivation of let-23 in the AC resulted in imprecise alignment of the AC with the 1° vulval cells, delayed AC invasion and disorganized adherens junctions at the newly forming contact site between the AC and the dorsal vulF toroid. We propose that EGFR signaling, activated by a reciprocal EGF cue from the 1° vulval cells, positions the AC at the vulval midline, guides it during invasion and assembles a cytoskeletal scaffold organizing the adherens junctions that connect the developing uterus to the dorsal vulF toroid. EGFR signaling in the AC thus ensures the precise alignment of the two developing organs.
1

Tissue-specific inhibition of protein sumoylation uncovers diverse SUMO functions during C. elegans vulval development

Aleksandra Fergin et al.Dec 7, 2021
Abstract The sumoylation (SUMO) pathway is involved in a variety of processes during C. elegans development, such as gonadal and vulval fate specification, cell cycle progression and maintenance of chromosome structure. The ubiquitous expression of the sumoylation machinery and its involvement in many essential processes has made it difficult to dissect the tissue-specific roles of protein sumoylation and identify the specific target proteins. To overcome these challenges, we have established tools to block protein sumoylation and degrade sumoylated target proteins in a tissue-specific and temporally controlled manner. We employed the auxin-inducible protein degradation system (AID) to down-regulate AID-tagged SUMO E3 ligase GEI-17 or the SUMO ortholog SMO-1, either in the vulval precursor cells (VPCs) or in the gonadal anchor cell (AC). Tissue-specific inhibition of GEI-17 and SMO-1 revealed diverse roles of the SUMO pathway during vulval development, such as AC positioning, basement membrane (BM) breaching, vulval cell fate specification and epithelial morphogenesis. Inhibition of sumoylation in the VPCs resulted in an abnormal shape of the vulval toroids and ectopic cell fusions. Sumoylation of the ETS transcription factor LIN-1 at K169 mediates a subset of these SUMO functions, especially the proper contraction of the ventral vulA toroids. Thus, the SUMO pathway plays diverse roles throughout vulval development.
5

Actomyosin-mediated apical constriction promotes physiological germ cell death inC. elegans

Tea Kohlbrenner et al.Aug 22, 2023
Abstract Germ cell apoptosis in C. elegans hermaphrodites is a physiological process eliminating around 60% of all cells in meiotic prophase to maintain tissue homeostasis. In contrast to programmed cell death in the C. elegans soma, the selection of germ cells undergoing apoptosis is stochastic. By live-tracking individual germ cells at the pachytene stage, we found that germ cells smaller than their neighbors are selectively eliminated through apoptosis before differentiating into oocytes. Thus, cell size is a strong predictor of physiological germ cell death. The RAS/MAPK and ECT/RHO/ROCK pathways together regulate germ cell size by controlling actomyosin constriction at the apical rachis bridges, which are cellular openings connecting the syncytial germ cells to a shared cytoplasmic core. Enhancing apical constriction reduces germ cell size and increases the rate of cell death while inhibiting the actomyosin network in the germ cells prevents their death. We propose that actomyosin contractility at the rachis bridges of the syncytial germ cells amplifies intrinsic disparities in cell size. Through this mechanism, animals can adapt the rate of germ cell death and differentiation to changing environmental conditions.
0

Heterogeneity in heat shock response dynamics caused by translation fidelity decline and proteostasis collapse

Nadia Vertti‐Quintero et al.Oct 30, 2019
Genetics, environment, and stochasticity influence the rate of ageing in living organisms. Individual Caenorhabditis elegans that are genetically identical and cultured in the same environment have different lifespans, suggesting a significant role of stochasticity in ageing. We have developed a novel microfluidic methodology to measure heat-shock response as a surrogate marker for heterogeneity associated with lifespan and have quantified the heat-shock response of C. elegans at the population, single individual, and tissue levels. We have further mathematically modelled our data to identify the major drivers determining such heterogeneity. This approach demonstrates that protein translation and degradation rate constants explain the individuality of the heat-shock time-course dynamic. We observed a decline of protein turnover capacity in early adulthood, co-incidentally occurring as the predicted proteostasis collapse. We identified a decline of intestinal response as the tissue that underlies the individual heterogeneity. Additionally, we verified that individuals with enhanced translation fidelity in early adulthood live longer. Altogether, our results reveal that the stochastic onset of proteostasis collapse of somatic tissues during early adulthood reflects individual protein translation capacity underlying heterogenic ageing of isogenic C. elegans .
Load More