VZ
Volker Zickermann
Author with expertise in ATP Synthase Function and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(69% Open Access)
Cited by:
1,770
h-index:
40
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Macromolecular organization of ATP synthase and complex I in whole mitochondria

Karen Davies et al.Aug 11, 2011
We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F(1) heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis.
11
0

Assessment of amino acid charge states based on cryo-electron microscopy and molecular dynamics simulations of respiratory complex I

Jonathan Lasham et al.Sep 1, 2024
The charge states of titratable amino acid residues play a key role in the function of membrane-bound bioenergetic proteins. However, determination of these charge states both through experimental and computational approaches is extremely challenging. Cryo-EM density maps can provide insights on the charge states of titratable amino acid residues. By performing classical atomistic molecular dynamics simulations on the high resolution cryo-EM structures of respiratory complex I from Yarrowia lipolytica, we analyze the conformational and charge states of a key acidic residue in its ND1 subunit, aspartic acid D203, which is also a mitochondrial disease mutation locus. We suggest that in the native state of respiratory complex I, D203 is negatively charged and maintains a stable hydrogen bond to a conserved arginine residue. Alternatively, upon conformational change in the turnover state of the enzyme, its sidechain attains a charge-neutral status. We discuss the implications of this analysis on the molecular mechanism of respiratory complex I.
29

Role of protonation states in stability of molecular dynamics simulations of high-resolution membrane protein structures

Jonathan Lasham et al.Aug 25, 2023
Abstract Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with amino acids modeled in their standard protonation state the structure diverges far from its starting conformation. In comparison, MD simulations performed with pre-determined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results suggest it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to launching any MD simulations. Furthermore, the combined approach of protonation state prediction and MD simulations can provide valuable information on the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions, but also the atomic modeling of density data.
Load More