JS
Jarkko Salojärvi
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(69% Open Access)
Cited by:
6,952
h-index:
46
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men

Anne Salonen et al.Apr 24, 2014
Abstract There is growing interest in understanding how diet affects the intestinal microbiota, including its possible associations with systemic diseases such as metabolic syndrome. Here we report a comprehensive and deep microbiota analysis of 14 obese males consuming fully controlled diets supplemented with resistant starch (RS) or non-starch polysaccharides (NSPs) and a weight-loss (WL) diet. We analyzed the composition, diversity and dynamics of the fecal microbiota on each dietary regime by phylogenetic microarray and quantitative PCR (qPCR) analysis. In addition, we analyzed fecal short chain fatty acids (SCFAs) as a proxy of colonic fermentation, and indices of insulin sensitivity from blood samples. The diet explained around 10% of the total variance in microbiota composition, which was substantially less than the inter-individual variance. Yet, each of the study diets induced clear and distinct changes in the microbiota. Multiple Ruminococcaceae phylotypes increased on the RS diet, whereas mostly Lachnospiraceae phylotypes increased on the NSP diet. Bifidobacteria decreased significantly on the WL diet. The RS diet decreased the diversity of the microbiota significantly. The total 16S ribosomal RNA gene signal estimated by qPCR correlated positively with the three major SCFAs, while the amount of propionate specifically correlated with the Bacteroidetes. The dietary responsiveness of the individual’s microbiota varied substantially and associated inversely with its diversity, suggesting that individuals can be stratified into responders and non-responders based on the features of their intestinal microbiota.
0
Citation541
0
Save
0

PLETHORA gradient formation mechanism separates auxin responses

Ari Mähönen et al.Aug 21, 2014
Through a combination of experimental and computational approaches, the interplay between the plant hormone auxin and the auxin-induced PLETHORA transcription factors is shown to control zonation and gravity-prompted growth movements in plants. Gradients of the plant hormone auxin and of auxin-induced PLETHORA (PLT) transcription factors control plant division into distinct developmental zones. Auxin is also essential for the tropic responses through which plants rapidly adjust their direction of growth to adapt to environmental conditions. Using a combination of experimental and computational approaches, Ari Pekka Mähönen et al. show how an interplay of auxin and PLTs controls zonation and gravitropism. They find that PLT gradient is not a direct readout of the auxin gradient. Instead, prolonged high auxin levels generate a narrow PLT transcription domain from which a PLT gradient is generated, defining the location of developmental zones. This specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales allows both fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation. During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone1. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip2,3,4,5,6,7,8,9,10,11,12. In addition, auxin is also pivotal for tropic responses13,14. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation.
0

Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome

Jonna Jalanka et al.Dec 5, 2013

Background

 About 10% of patients with IBS report the start of the syndrome after infectious enteritis. The clinical features of postinfectious IBS (PI-IBS) resemble those of diarrhoea-predominant IBS (IBS-D). While altered faecal microbiota has been identified in other IBS subtypes, composition of the microbiota in patients with PI-IBS remains uncharacterised. 

Objective

 To characterise the microbial composition of patients with PI-IBS, and to examine the associations between the faecal microbiota and a patient9s clinical features. 

Design

 Using a phylogenetic microarray and selected qPCR assays, we analysed differences in the faecal microbiota of 57 subjects from five study groups: patients with diagnosed PI-IBS, patients who 6 months after gastroenteritis had either persisting bowel dysfunction or no IBS symptoms, benchmarked against patients with IBS-D and healthy controls. In addition, the associations between the faecal microbiota and health were investigated by correlating the microbial profiles to immunological markers, quality of life indicators and host gene expression in rectal biopsies. 

Results

 Microbiota analysis revealed a bacterial profile of 27 genus-like groups, providing an Index of Microbial Dysbiosis (IMD), which significantly separated patient groups and controls. Within this profile, several members of Bacteroidetes phylum were increased 12-fold in patients, while healthy controls had 35-fold more uncultured Clostridia. We showed correlations between the IMD and expression of several host gene pathways, including amino acid synthesis, cell junction integrity and inflammatory response, suggesting an impaired epithelial barrier function in IBS. 

Conclusions

 The faecal microbiota of patients with PI-IBS differs from that of healthy controls and resembles that of patients with IBS-D, suggesting a common pathophysiology. Moreover, our analysis suggests a variety of host–microbe associations that may underlie intestinal symptoms, initiated by gastroenteritis.
0
Citation299
0
Save
0

Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1

Triin Vahisalu et al.Feb 1, 2010
The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS-dependent stomatal signaling. We show that the ozone-triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S-type anion channel function, and the protein kinase OST1 were required for the ROS-induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1-7 (S120F) and slac1-8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass-spectrometry analysis combined with site-directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant-negative mutants abi1-1 and abi2-1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS-induced activation of the S-type anion channel.
0

Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis

Michael Wrzaczek et al.May 25, 2010
Plant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized.We examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses.Combining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses.
0
Citation276
0
Save
Load More