SH
Samuel Herberg
Author with expertise in Global Prevalence and Treatment of Glaucoma
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
8
h-index:
23
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Engineering a thixotropic and biochemically tunable hyaluronan and collagen bioink for biofabrication of multiple tissue construct types

Julio Aleman et al.Sep 3, 2021
Abstract The field of three-dimensional (3D) bioprinting has advanced rapidly in recent years. Significant reduction in the costs associated with obtaining functional 3D bioprinting hardware platforms is both a cause and a result of these advances. As such, there are more laboratories than ever integrating bioprinting methodologies into their research. However, there is a lack of standards in the field of biofabrication governing any requirements or characteristics to support cross-compatibility with biomaterial bioinks, hardware, and different tissue types. Here we describe a modular extracellular matrix (ECM) inspired bioink comprised of collagen and hyaluronic acid base components that: 1) employ reversible internal hydrogen bonding forces to generate thixotropic materials that dynamically reduce their elastic moduli in response to increased shear stress, thus enabling increased compatibility with printing hardware; and 2) modular addons in the form of chemically-modified fibronectin and laminin that when covalently bound within the bioink support a variety of tissue types, including liver, neural, muscle, pancreatic islet, and adipose tissue. These features aim to accelerate the deployment of such bioinks for tissue engineering of functional constructs in the hands of various end users.
5
Citation6
0
Save
6

YAP/TAZ inactivation with simvastatin attenuates glucocorticoid-induced human trabecular meshwork cell dysfunction

Hannah Yoo et al.Sep 28, 2022
Abstract Purpose Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically-used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that YAP/TAZ inactivation with simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction. Methods Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. Results Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and extracellular fibronectin deposition. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. Conclusions YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
0

Scaffold-free human mesenchymal stem cell construct geometry regulates long bone regeneration

Samuel Herberg et al.Sep 30, 2019
Scaffold-based bone tissue engineering approaches frequently induce repair processes dissimilar to normal developmental programs. In contrast, biomimetic strategies aim to recapitulate aspects of development through cellular self-organization, morphogenetic pathway activation, and mechanical cues. This may improve regenerative outcome in large long bone defects that cannot heal on their own; however, no study to date has investigated the role of scaffold-free construct geometry, in this case tubes mimicking long bone diaphyses, on bone regeneration. We hypothesized that microparticle-mediated in situ presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) to engineered human mesenchymal stem cell (hMSC) tubes induces the endochondral cascade, and that TGF-β1 + BMP-2-presenting hMSC tubes facilitate enhanced endochondral healing of critical-sized femoral segmental defects under delayed in vivo mechanical loading conditions compared to loosely-packed hMSC sheets. Here, localized morphogen presentation imparted early chondrogenic lineage priming, and stimulated robust endochondral differentiation of hMSC tubes in vitro. In an ectopic environment, hMSC tubes formed a cartilage template that was actively remodeled into trabecular bone through endochondral ossification without lengthy pre-differentiation. Similarly, hMSC tubes stimulated in vivo cartilage and bone formation and more robust healing in femoral defects compared to hMSC sheets. New bone was formed through endochondral ossification in both groups; however, only hMSC tubes induced regenerate tissue partially resembling normal growth plate architecture. Together, this study demonstrates the interaction between mesenchymal cell condensation geometry, bioavailability of multiple morphogens, and defined in vivo mechanical environment to recapitulate developmental programs for biomimetic bone tissue engineering.
4

YAP/TAZ mediate TGFβ2-induced Schlemm’s canal cell dysfunction

Haiyan Li et al.Jun 6, 2022
Abstract Purpose Elevated transforming growth factor beta2 (TGFβ2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional co-activators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm’s Canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGFβ2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix (ECM) hydrogels, and examine whether pharmacologic YAP/TAZ inhibition would attenuate TGFβ2-induced HSC cell dysfunction. Methods Primary HSC cells were seeded atop photocrosslinked ECM hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGFβ2 in the absence or presence of concurrent actin destabilization or pharmacologic YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, ECM production, phospho-myosin light chain levels, and hydrogel contraction were assessed. Results TGFβ2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous (F)-actin relaxation or depolymerization. Pharmacologic YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and reduced actomyosin cytoskeletal rearrangement in HSC cells induced by TGFβ2. Similarly, verteporfin significantly attenuated TGFβ2-induced HSC cell-encapsulated hydrogel contraction. Conclusions Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions, and suggest that pharmacologic YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
0

Simulating the human tumor microenvironment in colorectal cancer organoids in vitro and in vivo

Mahesh Devarasetty et al.Nov 1, 2019
The tumor microenvironment (TME) plays a significant role in cancer growth and metastasis. Bioengineered models of the TME will advance our understanding of cancer progression and facilitate identification of novel anti-cancer therapeutics that target TME components such as extracellular matrix (ECM) and stromal cells. However, most current in vitro models fail to recapitulate the extensive features of the human tumor stroma, especially ECM architecture, and are not exposed to intact body physiology. On the other hand, in vivo animal models do not accurately capture human tumor architecture. Using the features of biopsied colorectal cancer (CRC) tissue as a guide, we address these deficiencies by creating human organoids containing a colonic stromal ECM layer and CRC spheroids. Organoids were studied in vitro and upon implantation in mice for 28 days. We show that the stromal ECM micro-architecture, generated in vitro, was maintained in vivo for at least 28 days. Furthermore, comparisons with biopsied CRC tumors revealed that organoids with orderly structured TMEs induce an epithelial phenotype in CRC cells, similar to low-grade tumors, compared to a mesenchymal phenotype observed in disordered TMEs, similar to high-grade tumors. Altogether, these results are the first demonstration of replicating the human tumor ECM architecture in biofabricated tumor organoids under ex vivo and in vivo conditions.
0

Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair

Samuel Herberg et al.Feb 26, 2019
Endochondral ossification during long bone development and natural fracture healing initiates by mesenchymal cell condensation and is directed by local morphogen signals and mechanical cues. Here, we aimed to mimic these developmental conditions for regeneration of large bone defects. We hypothesized that engineered human mesenchymal stem cell (hMSC) condensations with in situ presentation of transforming growth factor-β1 (TGF-β1) and/or bone morphogenetic protein-2 (BMP-2) from encapsulated microparticles would promote endochondral regeneration of critical-sized rat femoral bone defects in a manner dependent on the in vivo mechanical environment. Mesenchymal condensations induced bone formation dependent on morphogen presentation, with dual BMP-2 + TGF-β1 fully restoring mechanical bone function by week 12. In vivo ambulatory mechanical loading, initiated at week 4 by delayed unlocking of compliant fixation plates, significantly enhanced the bone formation rate in the four weeks after load initiation in the dual morphogen group. In vitro, local presentation of either BMP-2 alone or BMP-2 + TGF-β1 initiated endochondral lineage commitment of mesenchymal condensations, inducing both chondrogenic and osteogenic gene expression through SMAD3 and SMAD5 signaling. In vivo, however, endochondral cartilage formation was evident only in the BMP-2 + TGF-β1 group and was enhanced by mechanical loading. The degree of bone formation was comparable to BMP-2 soaked on collagen but without the ectopic bone formation that limits the clinical efficacy of BMP-2/collagen. In contrast, mechanical loading had no effect on autograft-mediated repair. Together, this study demonstrates a biomimetic template for recapitulating developmental morphogenic and mechanical cues in vivo for tissue engineering.
0

Recapitulating bone development for tissue regeneration through engineered mesenchymal condensations and mechanical cues

Anna McDermott et al.Jun 29, 2017
Large bone defects cannot heal without intervention and have high complication rates even with the best treatments available. In contrast, bone fractures naturally healing with high success rates by recapitulating the process of bone development through endochondral ossification. Endochondral tissue engineering may represent a promising paradigm, but large bone defects are unable to naturally form a callus. We engineered mesenchymal condensations featuring local morphogen presentation (TGF-β1) to mimic the cellular organization and lineage progression of the early limb bud. As mechanical forces are critical for proper endochondral ossification during bone morphogenesis and fracture healing, we hypothesized that mechanical cues would be important for endochondral regeneration. Here, using fixation plates that modulate ambulatory load transfer through dynamic tuning of axial compliance, we found that in vivo mechanical loading was necessary to restore bone function to large bone defects through endochondral ossification. Endochondral regeneration produced zonal cartilage and primary spongiosa mimetic of the native growth plate. Live human chondrocytes contributed to endochondral regeneration in vivo, while cell devitalization prior to condensation transplantation abrogated bone formation. Mechanical loading induced regeneration comparable to high-dose BMP-2 delivery, but without heterotopic bone formation and with order-of-magnitude greater mechanosensitivity. In vitro, mechanical loading promoted chondrogenesis, and upregulated pericellular collagen deposition and angiogenic gene expression. Consistently, in vivo mechanical loading regulated cartilage formation and neovascular invasion dependent on load timing. Together, this study represents the first demonstration of the effects of mechanical loading on transplanted cell-mediated bone defect regeneration, and provides a new template for recapitulating developmental programs for tissue engineering.
0

Targeting YAP mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology

Haiyan Li et al.Jan 1, 2023
Pathologic alterations in the biomechanical properties of the Schlemm9s canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared to that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell YAP mechanosignaling in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP activity in primary human SC cells, and whether disruption of YAP mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Lastly, we found that perfusion of the clinically-used, small molecule YAP inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP mechanosignaling in SC cell dysfunction and suggest that YAP inhibition has therapeutic value for treating ocular hypertension in glaucoma.
1

Engineering a 3D hydrogel system to study optic nerve head astrocyte morphology and behavior in response to glaucomatous insult

Ana Strat et al.Jan 11, 2022
In glaucoma, astrocytes within the optic nerve head (ONH) rearrange their actin cytoskeleton, while becoming reactive and upregulating intermediate filament glial fibrillary acidic protein (GFAP). Increased transforming growth factor beta 2 (TGFβ2) levels have been implicated in glaucomatous ONH dysfunction. A key limitation of using conventional 2D culture to study ONH astrocyte behavior is the inability to faithfully replicate the in vivo ONH microenvironment. Here, we engineer a 3D ONH astrocyte hydrogel to better mimic in vivo mouse ONH astrocyte (MONHA) morphology, and test induction of MONHA reactivity using TGFβ2. Primary MONHAs were isolated from C57BL/6J mice and cell purity confirmed. To engineer 3D cell-laden hydrogels, MONHAs were mixed with photoactive extracellular matrix components (collagen type I, hyaluronic acid) and crosslinked for 5 minutes using a photoinitiator (0.025% riboflavin) and UV light (405-500 nm, 10.3 mW/cm2). MONHA-encapsulated hydrogels were cultured for 3 weeks, and then treated with TGFβ2 (2.5, 5.0 or 10 ng/ml) for 7 days to assess for reactivity. Following encapsulation, MONHA retained high cell viability in hydrogels and continued to proliferate over 4 weeks as determined by live/dead staining and MTS assays. Sholl analysis demonstrated that MONHAs within hydrogels developed increasing process complexity with longer process length over time. Cell processes connected with neighboring cells, coinciding with Connexin43 expression within astrocytic processes. Treatment with TGFβ2 induced reactivity in MONHA-encapsulated hydrogels as determined by altered F-actin cytoskeletal morphology, increased GFAP expression, and elevated fibronectin and collagen IV deposition. Our data sets the stage for future use of this 3D biomimetic ONHA-encapsulated hydrogel to investigate ONHA behavior in response to glaucomatous insult.
5

Effects of netarsudil-family Rho kinase inhibitors on human trabecular meshwork cell contractility and actin remodeling using a bioengineered ECM hydrogel

Tyler Bagué et al.May 19, 2022
Abstract Interactions between trabecular meshwork (TM) cells and their extracellular matrix (ECM) are critical for normal outflow function in the healthy eye. Multifactorial dysregulation of the TM is the principal cause of elevated intraocular pressure that is strongly associated with glaucomatous vision loss. Key characteristics of the diseased TM are pathologic contraction and actin stress fiber assembly, contributing to overall tissue stiffening. Among first-line glaucoma medications, the Rho-associated kinase inhibitor (ROCKi) netarsudil is known to directly target the stiffened TM to improve outflow function via tissue relaxation involving focal adhesion and actin stress fiber disassembly. Yet, no in vitro studies have explored the effect of netarsudil on human TM (HTM) cell contractility and actin remodeling in a 3D ECM environment. Here, we use our bioengineered HTM cell-encapsulated ECM hydrogel to investigate the efficacy of different netarsudil-family ROCKi compounds on reversing pathologic contraction and actin stress fibers. Netarsudil and all related experimental ROCKi compounds exhibited significant ROCK1/2 inhibitory and focal adhesion disruption activities. Furthermore, all ROCKi compounds displayed potent contraction-reversing effects on HTM hydrogels upon glaucomatous induction in a dose-dependent manner, relatively consistent with their biochemical/cellular inhibitory activities. At their tailored EC 50 levels, netarsudil-family ROCKi compounds exhibited distinct effect signatures of reversing pathologic HTM hydrogel contraction and actin stress fibers, independent of the cell strain used. Netarsudil outperformed the experimental ROCKi compounds in support of its clinical status. In contrast, at uniform EC 50 -levels using netarsudil as reference, all ROCKi compounds performed similarly. Collectively, our data suggest that netarsudil exhibits high potency to rescue HTM cell pathobiology in a tissue-mimetic 3D ECM microenvironment, solidifying the utility of our bioengineered hydrogel model as a viable screening platform to further our understanding of TM pathophysiology in glaucoma.
Load More