AC
Alix Coste
Author with expertise in Diagnosis and Management of Fungal Infections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
1,207
h-index:
36
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Antifungal Resistance and New Strategies to Control Fungal Infections

Patrick Vandeputte et al.Dec 3, 2011
A
S
P
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
0
Citation456
0
Save
0

TAC1 , Transcriptional Activator of CDR Genes, Is a New Transcription Factor Involved in the Regulation of Candida albicans ABC Transporters CDR1 and CDR2

Alix Coste et al.Dec 1, 2004
+2
F
M
A
ABSTRACT The ABC transporter genes CDR1 and CDR2 can be upregulated in Candida albicans developing resistance to azoles or can be upregulated by exposing cells transiently to drugs such as fluphenazine. The cis -acting drug-responsive element (DRE) present in the promoters of both genes and necessary for their upregulation contains 5′-CGG-3′ triplets that are often recognized by transcriptional activators with Zn(2)-Cys(6) fingers. In order to isolate regulators of CDR1 and CDR2 , the C. albicans genome was searched for genes encoding proteins with Zn(2)-Cys(6) fingers. Interestingly, three of these genes were tandemly arranged near the mating locus. Their involvement in CDR1 and CDR2 upregulation was addressed because a previous study demonstrated a link between mating locus homozygosity and azole resistance. The deletion of only one of these genes (orf19.3188) was sufficient to result in a loss of transient CDR1 and CDR2 upregulation by fluphenazine and was therefore named TAC1 (transcriptional activator of CDR genes). Tac1p has a nuclear localization, and a fusion of Tac1p with glutathione S -transferase could bind the cis -acting regulatory DRE in both the CDR1 and the CDR2 promoters. TAC1 is also relevant for azole resistance, since a TAC1 allele ( TAC1-2 ) recovered from an azole-resistant strain could trigger constitutive upregulation of CDR1 and CDR2 in an azole-susceptible laboratory strain. Transcript profiling experiments performed with a TAC1 mutant and a revertant containing TAC1-2 revealed not only CDR1 and CDR2 as targets of TAC1 regulation but also other genes ( RTA3 , IFU5 , and HSP12 ) that interestingly contained a DRE-like element in their promoters. In conclusion, TAC1 appears to be the first C. albicans transcription factor involved in the control of genes mediating antifungal resistance.
0
Citation389
0
Save
0

A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans

Alix Coste et al.Feb 2, 2006
+6
J
J
A
Abstract TAC1, a Candida albicans transcription factor situated near the mating-type locus on chromosome 5, is necessary for the upregulation of the ABC-transporter genes CDR1 and CDR2, which mediate azole resistance. We showed previously the existence of both wild-type and hyperactive TAC1 alleles. Wild-type alleles mediate upregulation of CDR1 and CDR2 upon exposure to inducers such as fluphenazine, while hyperactive alleles result in constitutive high expression of CDR1 and CDR2. Here we recovered TAC1 alleles from two pairs of matched azole-susceptible (DSY294; FH1: heterozygous at mating-type locus) and azole-resistant isolates (DSY296; FH3: homozygous at mating-type locus). Two different TAC1 wild-type alleles were recovered from DSY294 (TAC1-3 and TAC1-4) while a single hyperactive allele (TAC1-5) was isolated from DSY296. A single amino acid (aa) difference between TAC1-4 and TAC1-5 (Asn977 to Asp or N977D) was observed in a region corresponding to the predicted activation domain of Tac1p. Two TAC1 alleles were recovered from FH1 (TAC1-6 and TAC1-7) and a single hyperactive allele (TAC1-7) was recovered from FH3. The N977D change was seen in TAC1-7 in addition to several other aa differences. The importance of N977D in conferring hyperactivity to TAC1 was confirmed by site-directed mutagenesis. Both hyperactive alleles TAC1-5 and TAC1-7 were codominant with wild-type alleles and conferred hyperactive phenotypes only when homozygous. The mechanisms by which hyperactive alleles become homozygous was addressed by comparative genome hybridization and single nucleotide polymorphism arrays and indicated that loss of TAC1 heterozygosity can occur by recombination between portions of chromosome 5 or by chromosome 5 duplication.
0
Citation362
0
Save
0

Condition-specific series of metabolic sub-networks and its application for gene set enrichment analysis

Van Tran et al.Oct 11, 2017
+3
A
S
V
Genome-scale metabolic networks and transcriptomic data represent complementary sources of knowledge about an organism's metabolism, yet their integration to achieve biological insight remains challenging. We investigate here condition-specific series of metabolic sub-networks constructed by successively removing genes from a comprehensive network. The optimal order of gene removal is deduced from transcriptomic data. The sub-networks are evaluated via a fitness function, which estimates their degree of alteration. We then consider how a gene set, i.e. a group of genes contributing to a common biological function, is depleted in the series of sub-networks to detect the difference between experimental conditions. The method, named metaboGSE, is validated on public data for Yarrowia lipolytica. It is shown to produce more specific GO terms compared to GSEA or topGO, and better discrimination between conditions compared to GIMME. Our sub-network construction method could also use proteomic or metabolomic data, and should be relevant to other applications.
5

Upc2-mediated mechanisms of azole resistance in Candida auris

Jizhou Li et al.Sep 29, 2023
+4
A
L
J
ABSTRACT Candida auris is an emerging yeast pathogen of major concern because of its ability to cause hospital outbreaks of invasive candidiasis and to develop resistance to antifungal drugs. A majority of C. auris isolates are resistant to fluconazole, a first-line treatment of invasive candidiasis. Mechanisms of azole resistance are multiple, including mutations in the target gene ERG11 and activation of the transcription factors Tac1b and Mrr1, which control the drug transporters Cdr1 and Mdr1, respectively. In this study, we investigated the role the transcription factor Upc2, which is known to regulate the ergosterol biosynthesis pathway and azole resistance in other Candida spp. Genetic deletion and hyperactivation of Upc2 by epitope tagging in C. auris resulted in drastic increased and decreased susceptibility to azoles, respectively. This effect was conserved in strains with genetic hyperactivation of Tac1b or Mrr1. Reverse transcription PCR analyses showed that Upc2 regulates ERG11 expression and also activates the Mrr1/Mdr1 pathway. We showed that upregulation of MDR1 by Upc2 could occur independently from Mrr1. The impact of UPC2 deletion on MDR1 expression and azole susceptibility in a hyperactive Mrr1 background was stronger than that of MRR1 deletion in a hyperactive Upc2 background. While Upc2 hyperactivation resulted in a significant increase of expression of TAC1b , CDR1 expression remained unchanged. Taken together, our results showed that Upc2 is crucial for azole resistance in C. auris , via regulation of the ergosterol biosynthesis pathway and activation of the Mrr1/Mdr1 pathway. Notably, Upc2 is a very potent and direct activator of Mdr1.