LT
Luca Tubiana
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
519
h-index:
15
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Extended kalman filter tuning in sensorless PMSM drives

Silverio Bolognani et al.Nov 1, 2003
M
L
S
The use of an extended Kalman filter (EKF) as a nonlinear speed and position observer for permanent-magnet synchronous motor drives is a mature research topic. Notwithstanding, the shift from research prototype to a market-ready product still calls for a solution to some implementation pitfalls. The major and still unsolved topic is the choice of the EKF covariance matrices. This paper replaces the usual trial-and-error method with a straightforward matrices choice. These matrices, possibly combined with a novel self-tuning procedure, should put the EKF drive much closer to an off-the-shelf product. The proposed method is based on the complete normalization of the EKF algorithm representation. Successful experimental results are included in the paper.
24

Single-Molecule Structure and Topology of Kinetoplast DNA Networks

Pinyao He et al.Sep 4, 2022
+2
L
A
P
The Kinetoplast DNA (kDNA) is a two-dimensional Olympic-ring-like network of mutually linked 2.5 kb-long DNA minicircles found in certain parasites called Trypanosomes. Understanding the self-assembly and replication of this structure are not only major open questions in biology but can also inform the design of synthetic topological materials. Here we report the first high-resolution, single-molecule study of kDNA network topology using AFM and steered molecular dynamics simulations. We map out the DNA density within the network and the distribution of linking number and valence of the minicircles. We also characterise the DNA hubs that surround the network and show that they cause a buckling transition akin to that of a 2D elastic thermal sheet in the bulk. Intriguingly, we observe a broad distribution of density and valence of the minicircles, indicating heterogeneous network structure and individualism of different kDNA structures. Our findings explain outstanding questions in the field and offer single-molecule insights into the properties of a unique topological material.
24
Citation1
0
Save
1

Single-Molecule Morphology of Topologically Digested Olympic Networks

Saminathan Ramakrishnan et al.Jan 1, 2023
+5
Y
Z
S
The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realise synthetic Olympic networks in vitro. To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the Crithidia fasciculata kDNA genome and performed high-resolution Atomic Force Microscopy (AFM) and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, whilst cleaving both maxicircles and a minor class of minicircles yields non-circular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks and detection of in vivo perturbations.
0

Protein design under competition for amino acids availability

Francesca Nerattini et al.May 25, 2018
+3
C
L
F
Understanding the origin of the 20 letter alphabet of proteins is a long-lasting biophysical problem. In particular, studies focused extensively on the effect of a reduced alphabet size on the folding properties. However, the natural alphabet is a compromise between versatility and optimisation of the available resources. Here, for the first time, we include the additional impact of the relative availability of the amino acids. We present a protein design scheme that involves the competition for resources between a protein and a potential interaction partner that, additionally, gives us the chance to investigate the effect of the reduced alphabet on protein-protein interactions. We identify the optimal reduced set of letters for the design of the protein, and we observe that even alphabets reduced down to 4 letters allow for single protein folding. However, it is only with 6 letters that we achieve optimal folding, thus recovering experimental observations. Additionally, we notice that the binding between the protein and a potential interaction partner could not be avoided with the investigated reduced alphabets. Therefore, we suggest that aggregation could have been a driving force for the evolution of the large protein alphabet.
0

EXCOGITO, an Extensible Coarse-Graining Toolbox for the Investigation of Biomolecules by Means of Low-Resolution Representations

Marco Giulini et al.Jun 11, 2024
+2
L
R
M
Bottom-up coarse-grained (CG) models proved to be essential to complement and sometimes even replace all-atom representations of soft matter systems and biological macromolecules. The development of low-resolution models takes the moves from the reduction of the degrees of freedom employed, that is, the definition of a mapping between a system's high-resolution description and its simplified counterpart. Even in the absence of an explicit parametrization and simulation of a CG model, the observation of the atomistic system in simpler terms can be informative: this idea is leveraged by the mapping entropy, a measure of the information loss inherent to the process of coarsening. Mapping entropy lies at the heart of the extensible coarse-graining toolbox, EXCOGITO, developed to perform a number of operations and analyses on molecular systems pivoting around the properties of mappings. EXCOGITO can process an all-atom trajectory to compute the mapping entropy, identify the mapping that minimizes it, and establish quantitative relations between a low-resolution representation and the geometrical, structural, and energetic features of the system. Here, the software, which is available free of charge under an open-source license, is presented and showcased to introduce potential users to its capabilities and usage.
1

Dynamic and Facilitated Binding of Topoisomerase Accelerates Topological Relaxation

Davide Michieletto et al.Aug 28, 2021
+3
E
Y
D
How type 2 Topoisomerase (TopoII) proteins relax and simplify the topology of DNA molecules is one of the most intriguing open questions in genome and DNA biophysics. Most of the existing models neglect the dynamics of TopoII which is characteristics for proteins searching their targets via facilitated diffusion. Here, we show that dynamic binding of TopoII speeds up the topological relaxation of knotted substrates by enhancing the search of the knotted arc. Intriguingly, this in turn implies that the timescale of topological relaxation is virtually independent of the substrate length. We then discover that considering binding biases due to facilitated diffusion on looped substrates steers the sampling of the topological space closer to the boundaries between different topoisomers yielding an optimally fast topological relaxation. We discuss our findings in the context of topological simplification in vitro and in vivo.