CF
Christine Flaxman
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Long-read transcript sequencing identifies differential isoform expression in the entorhinal cortex in a transgenic model of tau pathology

Szi Leung et al.Aug 2, 2024
+12
A
R
S
Abstract Increasing evidence suggests that alternative splicing plays an important role in Alzheimer’s disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool ( FICLE ) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts – including specific isoforms of Apoe , App , Cd33 , Clu , Fyn and Trem2 – associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.
0
Citation1
0
Save
0

Vitamin D-binding protein is required for the maintenance of α-cell function and glucagon secretion

Katrina Viloria et al.Dec 19, 2019
+15
L
D
K
Vitamin D-binding protein (DBP) or GC-globulin carries vitamin D metabolites from the circulation to target tissues. DBP expression is highly-localized to the liver and pancreatic α-cells. While DBP serum levels, gene polymorphisms and autoantigens have all been associated with diabetes risk, the underlying mechanisms remain unknown. Here, we show that DBP regulates α-cell morphology, α-cell function and glucagon secretion. Deletion of DBP led to smaller and hyperplastic α-cells, altered Na+ channel conductance, impaired α-cell activation by low glucose, and reduced rates of glucagon secretion. Mechanistically, this involved reversible changes in islet microfilament abundance and density, as well as changes in glucagon granule distribution. Defects were also seen in β-cell and δ-cell function. Immunostaining of human pancreata revealed generalized loss of DBP expression as a feature of late-onset and longstanding, but not early-onset type 1 diabetes. Thus, DBP is a critical regulator of α-cell phenotype, with implications for diabetes pathogenesis.
10

Developmentally dynamic changes in DNA methylation in the human pancreas

Ailsa MacCalman et al.Jan 1, 2023
+12
E
E
A
Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with >21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome, with a depletion of developmentally-dynamic sites in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying some similarities but also tissue-specific developmental changes in DNA methylation. To our knowledge, this represents the most extensive exploration of DNA methylation patterns during human fetal pancreas development, confirming the prenatal period as a time of major epigenomic plasticity.
0

Developmentally dynamic changes in DNA methylation in the human pancreas

Ailsa MacCalman et al.Jun 3, 2024
+12
A
E
A
Abstract Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.