EG
Erick Geiger
Author with expertise in Resilience of Coral Reef Ecosystems to Climate Change
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
257
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reef-Scale Thermal Stress Monitoring of Coral Ecosystems: New 5-km Global Products from NOAA Coral Reef Watch

Gang Liu et al.Nov 20, 2014
The U.S. National Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch (CRW) program has developed a daily global 5-km product suite based on satellite observations to monitor thermal stress on coral reefs. These products fulfill requests from coral reef managers and researchers for higher resolution products by taking advantage of new satellites, sensors and algorithms. Improvements of the 5-km products over CRW’s heritage global 50-km products are derived from: (1) the higher resolution and greater data density of NOAA’s next-generation operational daily global 5-km geo-polar blended sea surface temperature (SST) analysis; and (2) implementation of a new SST climatology derived from the Pathfinder SST climate data record. The new products increase near-shore coverage and now allow direct monitoring of 95% of coral reefs and significantly reduce data gaps caused by cloud cover. The 5-km product suite includes SST Anomaly, Coral Bleaching HotSpots, Degree Heating Weeks and Bleaching Alert Area, matching existing CRW products. When compared with the 50-km products and in situ bleaching observations for 2013–2014, the 5-km products identified known thermal stress events and matched bleaching observations. These near reef-scale products significantly advance the ability of coral reef researchers and managers to monitor coral thermal stress in near-real-time.
0
Paper
Citation257
0
Save
0

Multi-Factor Coral Disease Risk Forecasting for Early Warning and Management

Jamie Caldwell et al.Jan 1, 2023
Ecological forecasts are becoming increasingly valuable tools for conservation and management. However, there are few examples of near real-time forecasting systems that account for the wide range of ecological complexities. We developed a new coral disease ecological forecasting system that explores a suite of ecological relationships and their uncertainty and investigates how forecast skill changes with shorter lead times. The Multi-Factor Coral Disease Risk product introduced here uses a combination of ecological and marine environmental conditions to predict risk of white syndromes and growth anomalies across reefs in the central and western Pacific and along the east coast of Australia and is available through the U.S. National Oceanic and Atmospheric Administration Coral Reef Watch program. This product produces weekly forecasts for a moving window of six months at ~5 km resolution based on quantile regression forests. The forecasts show superior skill at predicting disease risk on withheld survey data from 2012-2020 compared with predecessor forecast systems, with the biggest improvements shown for predicting disease risk at mid- to high-disease levels. Most of the prediction uncertainty arises from model uncertainty and therefore prediction accuracy and precision do not improve substantially with shorter lead times. This result arises because many predictor variables cannot be accurately forecasted, which is a common challenge across ecosystems. Weekly forecasts and scenarios can be explored through an online decision support tool and data explorer, co-developed with end-user groups to improve use and understanding of ecological forecasts. The models provide near real-time disease risk assessments and allow users to refine predictions and assess intervention scenarios. This work advances the field of ecological forecasting with real world complexities, and in doing so, better supports near term decision making for coral reef ecosystem managers and stakeholders. Secondarily, we identify clear needs and provide recommendations to further enhance our ability to forecast coral disease risk.