JT
Jonathan Turkus
Author with expertise in Genetic Architecture of Quantitative Traits
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
8
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Development of the Wheat Practical Haplotype Graph Database as a Resource for Genotyping Data Storage and Genotype Imputation

Katherine Jordan et al.Jun 11, 2021
+39
Z
P
K
Abstract To improve the efficiency of high-density genotype data storage and imputation in bread wheat ( Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the wheat PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 93% imputation accuracy with 0.01x sequence coverage, which was only slightly lower than the accuracy obtained using the 0.5x sequence coverage (96.9%). Compared to Beagle, on average, PHG imputation was ~4% ( p-value = 0.00027) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed from a wild relative into wheat. The reduced accuracy of imputation with GBS data (90.4%) is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of linkage disequlibrium and proportion of identity-by-descent regions among accessions in our reference panel. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher proportion of genetic variance for heading date and meiotic crossover rate compared to previous studies.
6
Citation4
0
Save
31

A Common Resequencing-Based Genetic Marker Dataset for Global Maize Diversity

Marcin Grzybowski et al.Oct 28, 2022
+3
G
R
M
ABSTRACT Maize ( Zea mays ssp. mays ) populations exhibit vast amounts of genetic and phenotypic diversity. As sequencing costs have declined, an increasing number of projects have sought to measure genetic differences between and within maize populations using whole genome resequencing strategies, identifying millions of segregating single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older genotyping strategies like microarrays and genotyping by sequencing, resequencing should, in principle, frequently identify and score common genetic variants. However, in practice, different projects frequently employ different analytical pipelines, often employ different reference genome assemblies, and consistently filter for minor allele frequency within the study population. This constrains the potential to reuse and remix data on genetic diversity generated from different projects to address new biological questions in new ways. Here we employ resequencing data from 1,276 previously published maize samples and 239 newly resequenced maize samples to generate a single unified marker set of ∼366 million segregating variants and ∼46 million high confidence variants scored across crop wild relatives, landraces as well as tropical and temperate lines from different breeding eras. We demonstrate that the new variant set provides increased power to identify known causal flowering time genes using previously published trait datasets, as well as the potential to track changes in the frequency of functionally distinct alleles across the global distribution of modern maize.
31
Citation2
0
Save
0

Quantitative resistance loci to southern rust mapped in a temperate maize diversity panel

Guangchao Sun et al.Apr 4, 2021
J
J
R
G
ABSTRACT Southern rust is a severe foliar disease of maize resulting from infection with the obligate biotrophic fungus, Puccinia polysora . The disease reduces photosynthetic productivity which reduces yields with the greatest yield losses (up to 50%) associated with earlier onset infections. Puccinia polysora urediniospores overwinter only in tropical and subtropical regions but cause outbreaks when environmental conditions favor initial infection. Increased temperatures and humidity during the growing season, combined with an increased frequency of moderate winters are likely to increase the frequency of severe southern rust outbreaks in the US corn belt. In summer 2020, a severe outbreak of Southern Rust was observed in eastern Nebraska (NE), USA. Disease incidence severity showed significant variation among maize genotypes. A replicated maize association panel planted in Lincoln, NE was scored for disease severity. Genome wide association studies identified four loci associated with significant quantitative variation in disease severity which were associated with candidate genes with plausible links to quantitative disease resistance and a transcriptome wide association study conducted identified additional associated genes. Together these results indicate substantial diversity in resistance to southern rust exists among current temperate adapted maize germplasm, including several candidate loci which may explain observed variation in resistance to southern rust.
0
Citation2
0
Save
0

Population level gene expression can repeatedly link genes to functions in maize

J. Torres-Rodríguez et al.Jan 1, 2023
+10
J
D
J
Transcriptome-Wide Association Studies (TWAS) can provide single gene resolution for candidate genes in plants, complementing Genome-Wide Association Studies (GWAS) but efforts in plants have been met with, at best, mixed success. We generated expression data from 693 maize genotypes, measured in a common field experiment, sampled over a two-hour period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize the accurate estimation of transcript abundance. TWAS could identify roughly ten times as many genes likely to play a role in flowering time regulation as GWAS conducted data from the same experiment. TWAS using mature leaf tissue identified known true positive flowering time genes known to act in the shoot apical meristem, and trait data from new environments enabled the identification of additional flowering time genes without the need for new expression data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize flowering time gene through trans-eQTL interactions. Collectively these results suggest the gene expression resource described here can link genes to functions across different plant phenotypes expressed in a range of tissues and scored in different experiments.
0

Transcripts and genomic intervals associated with variation in metabolite abundance in maize leaves under field conditions

R. Mathivanan et al.Aug 27, 2024
+5
J
C
R
Plants exhibit extensive environment-dependent intraspecific metabolic variation, which likely plays a role in determining variation in whole plant phenotypes. However, much of the work seeking to use natural variation to link genes and transcript's impacts on plant metabolism has employed data from controlled environments. Here we generate and employ data on variation in the abundance of twenty-six metabolites across 660 maize inbred lines under field conditions. We employ these data and previously published transcript and whole plant phenotype data reported for the same field experiment to identify both genomic intervals (through genome-wide association studies) and transcripts (through both transcriptome-wide association studies and an explainable AI approach based on the random forest) associated with variation in metabolite abundance. Both genome-wide association and random forest-based methods identified substantial numbers of significant associations including genes with plausible links to the metabolites they are associated with. In contrast, the transcriptome-wide association identified only six significant associations. In three cases, genetic markers associated with metabolic variation in our study colocalized with markers linked to variation in non-metabolic traits scored in the same experiment. We speculate that the poor performance of transcriptome-wide association studies in identifying transcript-metabolite associations may reflect a high prevalence of non-linear interactions between transcripts and metabolites and/or a bias towards rare transcripts playing a large role in determining intraspecific metabolic variation.
0

Population‐level gene expression can repeatedly link genes to functions in maize

J. Torres-Rodríguez et al.May 29, 2024
+10
J
D
J
Transcriptome-wide association studies (TWAS) can provide single gene resolution for candidate genes in plants, complementing genome-wide association studies (GWAS) but efforts in plants have been met with, at best, mixed success. We generated expression data from 693 maize genotypes, measured in a common field experiment, sampled over a 2-h period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize the accurate estimation of transcript abundance. TWAS could identify roughly 10 times as many genes likely to play a role in flowering time regulation as GWAS conducted data from the same experiment. TWAS using mature leaf tissue identified known true-positive flowering time genes known to act in the shoot apical meristem, and trait data from a new environment enabled the identification of additional flowering time genes without the need for new expression data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize flowering time gene through trans-eQTL interactions. Collectively these results suggest the gene expression resource described here can link genes to functions across different plant phenotypes expressed in a range of tissues and scored in different experiments.