RG
Robert Gruener
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
743
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data

Danielle Maeser et al.Jun 21, 2021
R
R
D
Cell line drug screening datasets can be utilized for a range of different drug discovery applications from drug biomarker discovery to building translational models of drug response. Previously, we described three separate methodologies to (1) correct for general levels of drug sensitivity to enable drug-specific biomarker discovery, (2) predict clinical drug response in patients and (3) associate these predictions with clinical features to perform in vivo drug biomarker discovery. Here, we unite and update these methodologies into one R package (oncoPredict) to facilitate the development and adoption of these tools. This new OncoPredict R package can be applied to various in vitro and in vivo contexts for drug and biomarker discovery.
0

Simplicity: web-based visualization and analysis of high-throughput cancer cell line screens

Alexander Ling et al.Jan 1, 2023
+9
A
W
A
High-throughput drug screens are a powerful tool for cancer drug development. However, the results of such screens are often made available only as raw data, which is intractable for researchers without informatic skills, or as highly processed summary statistics, which can lack essential information for translating screening results into clinically meaningful discoveries. To improve the usability of these datasets, we developed Simplicity, a robust and user-friendly web interface for visualizing, exploring, and summarizing raw and processed data from high-throughput drug screens. Importantly, Simplicity allows for easy recalculation of summary statistics at user-defined drug concentrations. This allows Simplicity9s outputs to be used with methods that rely on statistics being calculated at clinically relevant doses. Simplicity can be freely accessed at https://oncotherapyinformatics.org/simplicity/.
0

Inferring therapeutic vulnerability within tumors through integration of pan-cancer cell line and single-cell transcriptomic profiles

Weijie Zhang et al.Jan 1, 2023
+6
Y
A
W
Single-cell RNA sequencing greatly advanced our understanding of intratumoral heterogeneity through identifying tumor subpopulations with distinct biologies. However, translating biological differences into treatment strategies is challenging, as we still lack tools to facilitate efficient drug discovery that tackles heterogeneous tumors. One key component of such approaches tackles accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we present a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. Our method achieves high accuracy, with predicted sensitivities easily able to separate cells into their true cellular drug resistance status as measured by effect size (Cohen9s D > 1). More importantly, we examine our method9s utility with three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), and in each our predicted results are accurate and mirrored biological expectations. In the first two, we identified drugs for cell subpopulations that are resistant to standard-of-care (SOC) therapies due to intrinsic resistance or effects of tumor microenvironments. Our results showed high consistency with experimental findings from the original studies. In the third test, we generated SOC therapy resistant cell lines, used scIDUC to identify efficacious drugs for the resistant line, and validated the predictions with in-vitro experiments. Together, scIDUC quickly translates scRNA-seq data into drug response for individual cells, displaying the potential as a first-line tool for nuanced and heterogeneity-aware drug discovery.
4

Cooperativity between H3.3K27M and PDGFRA poses multiple therapeutic vulnerabilities in human iPSC-derived diffuse midline glioma avatars

Kasey Skinner et al.Feb 24, 2023
+17
C
C
K
Diffuse midline glioma (DMG) is a leading cause of brain tumor death in children. In addition to hallmark H3.3K27M mutations, significant subsets also harbor alterations of other genes, such as TP53 and PDGFRA. Despite the prevalence of H3.3K27M, the results of clinical trials in DMG have been mixed, possibly due to the lack of models recapitulating its genetic heterogeneity. To address this gap, we developed human iPSC-derived tumor models harboring TP53R248Q with or without heterozygous H3.3K27M and/or PDGFRAD842V overexpression. The combination of H3.3K27M and PDGFRAD842V resulted in more proliferative tumors when gene-edited neural progenitor (NP) cells were implanted into mouse brains compared to NP with either mutation alone. Transcriptomic comparison of tumors and their NP cells of origin identified conserved JAK/STAT pathway activation across genotypes as characteristic of malignant transformation. Conversely, integrated genome-wide epigenomic and transcriptomic analyses, as well as rational pharmacologic inhibition, revealed targetable vulnerabilities unique to the TP53R248Q; H3.3K27M; PDGFRAD842V tumors and related to their aggressive growth phenotype. These include AREG-mediated cell cycle control, altered metabolism, and vulnerability to combination ONC201/trametinib treatment. Taken together, these data suggest that cooperation between H3.3K27M and PDGFRA influences tumor biology, underscoring the need for better molecular stratification in DMG clinical trials.