AG
Ali Güler
Author with expertise in Mammalian Circadian Rhythms and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(63% Open Access)
Cited by:
2,876
h-index:
25
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Heat-Evoked Activation of the Ion Channel, TRPV4

Ali Güler et al.Aug 1, 2002
The mammalian nervous system constantly evaluates internal and environmental temperatures to maintain homeostasis and to avoid thermal extremes. Several members of the transient receptor potential (TRP) family of ion channels have been implicated as transducers of thermal stimuli, including TRPV1 and TRPV2, which are activated by heat, and TRPM8, which is activated by cold. Here we demonstrate that another member of the TRP family, TRPV4, previously described as a hypo-osmolarity-activated ion channel, also can be activated by heat. In response to warm temperatures, TRPV4 mediates large inward currents in Xenopus oocytes and both inward currents and calcium influx into human embryonic kidney 293 cells. In both cases these responses are observed at temperatures lower than those required to activate TRPV1 and can be inhibited reversibly by ruthenium red. Heat-evoked TRPV4-mediated responses are greater in hypo-osmotic solutions and reduced in hyperosmotic solutions. Consistent with these functional properties, we observed TRPV4 immunoreactivity in anterior hypothalamic structures involved in temperature sensation and the integration of thermal and osmotic information. Together, these data implicate TRPV4 as a possible transducer of warm stimuli within the hypothalamus.
0

Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision

Ali Güler et al.Apr 23, 2008
The mammalian retina has three types of light-sensing cells: rods, cones and melanopsin-containing cells. Rods and cones are involved in vision but have also been shown to contribute to light entrainment of the circadian clock. Now Güler et al. show that the non-image forming (circadian) role of rods and cones involves signalling via melanopsin-containing cells. This finding implies that people with troubled sleep or seasonal depression could benefit from light detection and melatonin suppression tests even if they are normally sighted. The mammalian retina has three types of light-sensing cells: rods, cones and melanopsin-containing cells. Rods and cones are involved in vision but have also been shown to contribute to light-entrainment of the circadian clock. Rods and cones must signal through melanopsin-containing cells for the latter. Rod and cone photoreceptors detect light and relay this information through a multisynaptic pathway to the brain by means of retinal ganglion cells (RGCs)1. These retinal outputs support not only pattern vision but also non-image-forming (NIF) functions, which include circadian photoentrainment and pupillary light reflex (PLR). In mammals, NIF functions are mediated by rods, cones and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs)2,3. Rod–cone photoreceptors and ipRGCs are complementary in signalling light intensity for NIF functions4,5,6,7,8,9,10,11,12. The ipRGCs, in addition to being directly photosensitive, also receive synaptic input from rod–cone networks13,14. To determine how the ipRGCs relay rod–cone light information for both image-forming and non-image-forming functions, we genetically ablated ipRGCs in mice. Here we show that animals lacking ipRGCs retain pattern vision but have deficits in both PLR and circadian photoentrainment that are more extensive than those observed in melanopsin knockouts8,10,11. The defects in PLR and photoentrainment resemble those observed in animals that lack phototransduction in all three photoreceptor classes6. These results indicate that light signals for irradiance detection are dissociated from pattern vision at the retinal ganglion cell level, and animals that cannot detect light for NIF functions are still capable of image formation.
0

Distinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance

Gurprit Lall et al.May 1, 2010
SummaryPhotoreceptive, melanopsin-expressing retinal ganglion cells (mRGCs) encode ambient light (irradiance) for the circadian clock, the pupillomotor system, and other influential behavioral/physiological responses. mRGCs are activated both by their intrinsic phototransduction cascade and by the rods and cones. However, the individual contribution of each photoreceptor class to irradiance responses remains unclear. We address this deficit using mice expressing human red cone opsin, in which rod-, cone-, and melanopsin-dependent responses can be identified by their distinct spectral sensitivity. Our data reveal an unexpectedly important role for rods. These photoreceptors define circadian responses at very dim "scotopic" light levels but also at irradiances at which pattern vision relies heavily on cones. By contrast, cone input to irradiance responses dissipates following light adaptation to the extent that these receptors make a very limited contribution to circadian and pupillary light responses under these conditions. Our data provide new insight into retinal circuitry upstream of mRGCs and optimal stimuli for eliciting irradiance responses.Highlights•Red cone knockin (Opn1mwR) mice reveal rod, cone, and melanopsin phases to NIF vision•Rods drive circadian responses to very low irradiances (scotopic threshold)•Circadian responses to light in the photopic range can be rod driven•Light adaptation limits the influence of cones on NIF vision
0

Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding

Ryan Grippo et al.Jan 1, 2020
The widespread availability of energy-dense, rewarding foods is correlated with the increased incidence of obesity across the globe. Overeating during mealtimes and unscheduled snacking disrupts timed metabolic processes, which further contribute to weight gain. The neuronal mechanism by which the consumption of energy-dense food restructures the timing of feeding is poorly understood. Here, we demonstrate that dopaminergic signaling within the suprachiasmatic nucleus (SCN), the central circadian pacemaker, disrupts the timing of feeding, resulting in overconsumption of food. D1 dopamine receptor (Drd1)-null mice are resistant to diet-induced obesity, metabolic disease, and circadian disruption associated with energy-dense diets. Conversely, genetic rescue of Drd1 expression within the SCN restores diet-induced overconsumption, weight gain, and obesogenic symptoms. Access to rewarding food increases SCN dopamine turnover, and elevated Drd1-signaling decreases SCN neuronal activity, which we posit disinhibits downstream orexigenic responses. These findings define a connection between the reward and circadian pathways in the regulation of pathological calorie consumption.
0
Citation38
0
Save
Load More