AL
Arthur Laganowsky
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(81% Open Access)
Cited by:
3,197
h-index:
36
/
i10-index:
72
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Membrane proteins bind lipids selectively to modulate their structure and function

Arthur Laganowsky et al.Jun 1, 2014
A new mass-spectrometry method has been developed to obtain high-resolution spectra of folded proteins bound to lipids; using this technique as well as X-ray crystallography provides evidence for membrane protein conformational change as a result of lipid–protein interaction. Many of the high-resolution membrane protein structures published recently are notable for the presence of lipids closely associated with the protein, prompting the question, how are these lipids influencing membrane complex structure? Carol Robinson and colleagues have developed a new ion mobility mass spectrometry (IM-MS) method that enabled them to obtain mass spectra of folded protein conformations bound to lipids. Using this method they identified lipids that altered the stability of MscL (mechanosensitive channel of large conductance), aquaporin Z and the ammonia channel. They then determined the X-ray crystal structure of the ammonia channel bound to one of these lipids (phosphatidylglycerol), which revealed how a conformational change in a specific loop led to the formation of a phosphatidylglycerol-binding site. The major conclusion from this work is that an individual lipid-binding event can change the stability of a membrane complex. On the cover, IM-MS captures a native membrane protein complex emerging from an ion mobility cell. Shown is the ammonia channel in apo, one- and two-lipid bound states. Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments1,2,3,4,5,6,7 and that lipids can bind to specific sites, for example, in potassium channels8. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation9. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be important not only for defining the selectivity of membrane proteins towards lipids, but also for understanding the role of lipids in modulating protein function or drug binding.
0

Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function

Arthur Laganowsky et al.Mar 29, 2010
Abstract Small heat shock proteins alphaA and alphaB crystallin form highly polydisperse oligomers that frustrate protein aggregation, crystallization, and amyloid formation. Here, we present the crystal structures of truncated forms of bovine alphaA crystallin (AAC 59–163 ) and human alphaB crystallin (ABC 68–162 ), both containing the C‐terminal extension that functions in chaperone action and oligomeric assembly. In both structures, the C‐terminal extensions swap into neighboring molecules, creating runaway domain swaps. This interface, termed DS, enables crystallin polydispersity because the C‐terminal extension is palindromic and thereby allows the formation of equivalent residue interactions in both directions. That is, we observe that the extension binds in opposite directions at the DS interfaces of AAC 59–163 and ABC 68–162 . A second dimeric interface, termed AP, also enables polydispersity by forming an antiparallel beta sheet with three distinct registration shifts. These two polymorphic interfaces enforce polydispersity of alpha crystallin. This evolved polydispersity suggests molecular mechanisms for chaperone action and for prevention of crystallization, both necessary for transparency of eye lenses.
Load More