PR
Pierre-Louis Ruffault
Author with expertise in Management of Vascular Malformations in the Brain
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
9
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cell fixation and preservation for droplet-based single-cell transcriptomics

Jonathan Alles et al.Jan 10, 2017
+10
S
N
J
ABSTRACT Background Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells, in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not compromised by stress or ageing. Another challenge are rare cells that need to be collected over several days, or samples prepared at different times or locations. Results Here, we used chemical fixation to overcome these problems. Methanol fixation allowed us to stabilize and preserve dissociated cells for weeks. By using mixtures of fixed human and mouse cells, we showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary single cells from dissociated complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells sorted by FACS, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide ‘dropbead’, an R package for exploratory data analysis, visualization and filtering of Drop-seq data. Conclusions We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single cell resolution.
0
Citation9
0
Save
10

Molecular characterization of nodose ganglia development reveals a novel population of Phox2b+ glial progenitors in mice

Elijah Lowenstein et al.Jul 28, 2023
P
S
A
E
Abstract The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck, or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage tracing analysis revealed that despite their common developmental origin and extreme spatial proximity a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. Lastly, we used single cell RNA-sequencing (scRNA-seq) to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia and glial precursors, and mapped their spatial distribution by in situ hybridization. Our work demonstrates that these crest- derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells and display a transcriptional program that may underlie their bipotent nature. Significance statement The nodose ganglia contain sensory neurons that innervate many inner organs and play key roles in homeostatic behaviors such as digestion, regulation of blood pressure and heart rate, and breathing. Nodose sensory neurons are supported by nodose glial cells, which are understudied compared to their neuronal neighbors. Specifically, the genetic program governing their development is not fully understood. Here, we uncover a transcriptional program unique to nodose glial cells (transient expression of Phox2b) that resolves the 40-year-old finding that nodose glial progenitors can also give rise to autonomic neurons (whose development depends on Phox2b expression). Lastly, we leveraged single cell RNA-sequencing to identify the four major subtypes of nodose glial cells and used subtype specific marker genes to map their spatial distribution.
26

Prox2+ and Runx3+ neurons regulate esophageal motility

Elijah Lowenstein et al.Jul 7, 2022
+16
S
X
E
Summary Sensory neurons of the vagus nerve monitor distention and stretch in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we used genetically guided anatomical tracing, optogenetics and electrophysiology to identify and characterize three vagal sensory neuronal subtypes expressing Prox2 and Runx3. We show that these neuronal subtypes innervate the esophagus and stomach where they display regionalized innervation patterns. Their electrophysiological analysis showed that they are all low threshold mechanoreceptors, but possess different adaptation properties. Lastly, genetic ablation of Prox2+ and Runx3+ neurons demonstrated their essential roles for esophageal peristalsis and swallowing in freely behaving animals. Our work reveals the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain, and could lead to better understanding and treatment of esophageal motility disorders.
0

Molecular characterization of nodose ganglia development reveals a novel population of Phox2b+ glial progenitors in mice

Elijah Lowenstein et al.Jun 3, 2024
P
S
A
E
The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.