AR
Albert Reuther
Author with expertise in Parallel Computing and Performance Optimization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1,719
h-index:
22
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems

Tracy Braun et al.Jun 1, 2001
Mixed-machine heterogeneous computing (HC) environments utilize a distributed suite of different high-performance machines, interconnected with high-speed links, to perform different computationally intensive applications that have diverse computational requirements. HC environments are well suited to meet the computational demands of large, diverse groups of tasks. The problem of optimally mapping (defined as matching and scheduling) these tasks onto the machines of a distributed HC environment has been shown, in general, to be NP-complete, requiring the development of heuristic techniques. Selecting the best heuristic to use in a given environment, however, remains a difficult problem, because comparisons are often clouded by different underlying assumptions in the original study of each heuristic. Therefore, a collection of 11 heuristics from the literature has been selected, adapted, implemented, and analyzed under one set of common assumptions. It is assumed that the heuristics derive a mapping statically (i.e., off-line). It is also assumed that a metatask (i.e., a set of independent, noncommunicating tasks) is being mapped and that the goal is to minimize the total execution time of the metatask. The 11 heuristics examined are Opportunistic Load Balancing, Minimum Execution Time, Minimum Completion Time, Min–min, Max–min, Duplex, Genetic Algorithm, Simulated Annealing, Genetic Simulated Annealing, Tabu, and A*. This study provides one even basis for comparison and insights into circumstances where one technique will out-perform another. The evaluation procedure is specified, the heuristics are defined, and then comparison results are discussed. It is shown that for the cases studied here, the relatively simple Min–min heuristic performs well in comparison to the other techniques.
0
Paper
Citation1,710
0
Save
0

Detecting pathogen exposure during the non-symptomatic incubation period using physiological data

Lauren Milechin et al.Nov 13, 2017
Abstract Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning based method to better detect asymptomatic states during the incubation period using subtle, sub-clinical physiological markers. Starting with high-resolution physiological waveform data from non-human primate studies of viral (Ebola, Marburg, Lassa, and Nipah viruses) and bacterial ( Y. pestis ) exposure, we processed the data to reduce short-term variability and normalize diurnal variations, then provided these to a supervised random forest classification algorithm and post-classifier declaration logic step to reduce false alarms. In most subjects detection is achieved well before the onset of fever; subject cross-validation across exposure studies (varying viruses, exposure routes, animal species, and target dose) lead to 51h mean early detection (at 0.93 area under the receiver-operating characteristic curve [AUCROC]). Evaluating the algorithm against entirely independent datasets for Lassa, Nipah, and Y. pestis exposures un-used in algorithm training and development yields a mean 51h early warning time (at AUCROC=0.95). We discuss which physiological indicators are most informative for early detection and options for extending this capability to limited datasets such as those available from wearable, non-invasive, ECG-based sensors.