MM
Morgan Maeder
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
9,629
h-index:
30
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficient genome editing in zebrafish using a CRISPR-Cas system

Woong Hwang et al.Jan 29, 2013
+6
D
Y
W
In bacteria, foreign nucleic acids are silenced by clustered, regularly interspaced, short palindromic repeats (CRISPR)--CRISPR-associated (Cas) systems. Bacterial type II CRISPR systems have been adapted to create guide RNAs that direct site-specific DNA cleavage by the Cas9 endonuclease in cultured cells. Here we show that the CRISPR-Cas system functions in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies similar to those obtained using zinc finger nucleases and transcription activator-like effector nucleases.
0
Citation2,776
0
Save
0

Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo

John Zuris et al.Oct 30, 2014
+7
Y
D
J
Efficient protein delivery using cationic lipid transfection reagents enables high efficiency protein-based genome editing in vivo and in vitro. Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcription activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of unmodified Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.
0
Citation1,269
0
Save
0

CRISPR RNA–guided activation of endogenous human genes

Morgan Maeder et al.Jul 25, 2013
+3
V
S
M
Short guide RNAs (gRNAs) can direct catalytically inactive CRISPR-associated 9 nuclease (dCas9) to repress endogenous genes in bacteria and human cells. Here we show that single or multiple gRNAs can direct dCas9 fused to a VP64 transcriptional activation domain to increase expression of endogenous human genes. This proof-of-principle work shows that clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems can target heterologous effector domains to endogenous sites in human cells.
0
Citation1,097
0
Save
0

High-frequency modification of plant genes using engineered zinc-finger nucleases

Jeffrey Townsend et al.Apr 29, 2009
+4
R
D
J
The scope for improvement of yield and disease resistance of crop plants by genetic engineering has been limited by the lack of an efficient method for targeted gene modification. Zinc-finger protein technology looks set to fill the gap. This relies on the use of designed zinc-finger nucleases, artificial chimaeric proteins that exploit the natural recognition mechanism of cellular DNA repair machinery, to make sequence-specific double-stranded DNA breaks at a target locus. In this issue two groups report the successful application of this emerging technique. Shukla et al. modify the maize gene IPK1, thereby introducing both herbicide tolerance and modified phytate metabolism into this important crop plant. Townsend et al. target the SuR loci in tobacco plants, conferring resistance to imidazolinone and sulphonylurea herbicides. The method achieves a high frequency of gene targeting and should be suitable for the routine modification of endogenous plant genes. An efficient method for gene targeting in plants has been lacking until now, frustrating efforts to engineer crop plants. Here it is demonstrated that zinc-finger nucleases—enzymes engineered to create DNA double-strand breaks at specific loci—can be used for gene targeting, in this case inducing mutations that confer resistance to herbicides in tobacco plants. An efficient method for making directed DNA sequence modifications to plant genes (gene targeting) is at present lacking, thereby frustrating efforts to dissect plant gene function and engineer crop plants that better meet the world’s burgeoning need for food, fibre and fuel. Zinc-finger nucleases (ZFNs)—enzymes engineered to create DNA double-strand breaks at specific loci—are potent stimulators of gene targeting1,2; for example, they can be used to precisely modify engineered reporter genes in plants3,4. Here we demonstrate high-frequency ZFN-stimulated gene targeting at endogenous plant genes, namely the tobacco acetolactate synthase genes (ALS SuRA and SuRB), for which specific mutations are known to confer resistance to imidazolinone and sulphonylurea herbicides5. Herbicide-resistance mutations were introduced into SuR loci by ZFN-mediated gene targeting at frequencies exceeding 2% of transformed cells for mutations as far as 1.3 kilobases from the ZFN cleavage site. More than 40% of recombinant plants had modifications in multiple SuR alleles. The observed high frequency of gene targeting indicates that it is now possible to efficiently make targeted sequence changes in endogenous plant genes.
0
Citation698
0
Save
0

Rapid “Open-Source” Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification

Morgan Maeder et al.Jul 1, 2008
+23
T
M
M
Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zinc-finger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multifinger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1%–50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, and CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally integrated EGFP reporter gene. In summary, OPEN provides an “open-source” method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy.
0
Citation684
0
Save
0

Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10

Morgan Maeder et al.Jan 21, 2019
+34
C
M
M
0
Citation536
0
Save
0

Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells

Jizhong Zou et al.Jun 19, 2009
+10
P
M
J
We report here homologous recombination (HR)-mediated gene targeting of two different genes in human iPS cells (hiPSCs) and human ES cells (hESCs). HR-mediated correction of a chromosomally integrated mutant GFP reporter gene reaches efficiencies of 0.14%–0.24% in both cell types transfected by donor DNA with plasmids expressing zinc finger nucleases (ZFNs). Engineered ZFNs that induce a sequence-specific double-strand break in the GFP gene enhanced HR-mediated correction by > 1400-fold without detectable alterations in stem cell karyotypes or pluripotency. Efficient HR-mediated insertional mutagenesis was also achieved at the endogenous PIG-A locus, with a > 200-fold enhancement by ZFNs targeted to that gene. Clonal PIG-A null hESCs and iPSCs with normal karyotypes were readily obtained. The phenotypic and biological defects were rescued by PIG-A transgene expression. Our study provides the first demonstration of HR-mediated gene targeting in hiPSCs and shows the power of ZFNs for inducing specific genetic modifications in hiPSCs, as well as hESCs.
0
Citation507
0
Save
0

Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA)

Jeffry Sander et al.Dec 12, 2010
+20
M
E
J
Context-dependent assembly (CoDA) of zinc finger nucleases is reported. Starting from an archive of zinc finger modules known to function well together, effective multifinger arrays can be constructed using standard techniques. Also in this issue, Doyon et al. report rational design of nucleases with improved cleavage activity. Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.
0
Citation500
0
Save
0

Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins

Morgan Maeder et al.Oct 9, 2013
+10
M
J
M
A fusion protein comprising a TALE DNA-targeting domain and the 5-methylcytosine hydroxylase TET1 enables investigation of the function of specific DNA methylation events. Genome-wide studies have defined cell type–specific patterns of DNA methylation1 that are important for regulating gene expression in both normal development2 and disease3. However, determining the functional significance of specific methylation events remains challenging, owing to the lack of methods for removing such modifications in a targeted manner. Here we describe an approach for efficient targeted demethylation of specific CpGs in human cells using fusions of engineered transcription activator–like effector (TALE) repeat arrays and the TET1 hydroxylase catalytic domain. Using these TALE-TET1 fusions, we demonstrate that modification of critical methylated promoter CpG positions can lead to substantial increases in the expression of endogenous human genes. Our results delineate a strategy for understanding the functional significance of specific CpG methylation marks in the context of endogenous gene loci and validate programmable DNA demethylation reagents with potential utility for research and therapeutic applications.
0
Citation464
0
Save
0

ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool

Jeffry Sander et al.Apr 30, 2010
+3
D
M
J
ZiFiT (Zinc Finger Targeter) is a simple and intuitive web-based tool that provides an interface to identify potential binding sites for engineered zinc finger proteins (ZFPs) in user-supplied DNA sequences. In this updated version, ZiFiT identifies potential sites for ZFPs made by both the modular assembly and OPEN engineering methods. In addition, ZiFiT now integrates additional tools and resources including scoring schemes for modular assembly, an interface with the Zinc Finger Database (ZiFDB) of engineered ZFPs, and direct querying of NCBI BLAST servers for identifying potential off-target sites within a host genome. Taken together, these features facilitate design of ZFPs using reagents made available to the academic research community by the Zinc Finger Consortium. ZiFiT is freely available on the web without registration at http://bindr.gdcb.iastate.edu/ZiFiT/.
0
Citation366
0
Save
Load More